Circular Motion \& Gravitation

I. Circular Motion

- kinematics \& dynamics
- centripetal acceleration
- centripetal force
- nonuniform circular motion
- parametric equations
II. Universal Gravitation
- Newton's "4 $4^{\text {th" }}$ Law
- force fields \& orbits
- Kepler’s Laws

	The student will be able to:	HW:
1	Solve problems of uniform circular motion involving period, frequency, speed, velocity, acceleration, force.	$1-10$
2	Distinguish, explain, and apply the concepts of centripetal and centrifugal force.	$11-13$
3	Solve problems of uniform circular motion or cycloid motion by use of parametric equations.	$14-15$
4	Solve problems of nonuniform circular motion involving constant rate of change in speed in which there are radial and tangential components of acceleration.	$16-18$
5	State and apply Newton's Law of Universal Gravitation.	$19-23$
6	Define and apply gravitational field strength.	$24-28$
7	Solve problems involving circular orbits.	$29-34$
8	State, apply, and derive Kepler's 3rd ${ }^{\text {rd }}$ Law	$35-36$

For uniform speed: $\theta=\omega t$, where ω is a constant called the angular speed (or angular frequency) usually given in radians per second.

Derive position, velocity, acceleration as functions of angular speed and time using x and y coordinates...

Parametric Form of Uniform Circular Motion

$$
\begin{gathered}
x=r \cos (t+) \quad y=r \sin (t+) \\
v_{x}=r \sin (t+) \quad v_{y}=r \cos (t+) \\
a_{x}=r^{2} \cos (t+) \quad a_{y}=r^{2} \sin (t+) \\
=\frac{2}{T}=2 f \\
v=r=\frac{2 r}{T} \quad \begin{array}{l}
\text { where: } \\
r=\text { radius } \\
\omega=\text { angular speed } \\
\delta=\text { phase angle }
\end{array} \\
a=r^{2}=\frac{v^{2}}{r}
\end{gathered}
$$

Parametric Form of Uniform Circular Motion

$$
\begin{gathered}
\frac{v_{x}}{v_{y}}=\frac{r \sin (t+)}{r \cos (t+)}=\tan (t+) \\
\frac{a_{y}}{a_{x}}=\frac{r^{2} \sin (t+)}{r^{2} \cos (t+)}=\tan (t+) \\
\frac{a_{y}}{a_{x}}=\frac{v_{x}}{v_{y}}
\end{gathered}
$$

What is the significance of this?

This shows that velocity and acceleration vectors are always perpendicular to one another.

Parametric Form of Uniform Circular Motion

$$
\begin{gathered}
\vec{r}=(r \cos (\omega t+\delta)) \hat{i}+(r \sin (\omega t+\delta)) \hat{j} \\
\vec{r}=r(\cos (\omega t+\delta) \hat{i}+\sin (\omega t+\delta) \hat{j}) \\
\vec{a}=\left(-r \omega^{2} \cos (\omega t+\delta)\right) \hat{i}+\left(-r \omega^{2} \sin (\omega t+\delta)\right) \hat{j} \\
\vec{a}=-\omega^{2} r(\cos (\omega t+\delta) \hat{i}+\sin (\omega t+\delta) \hat{j}) \\
\vec{a}=-\omega^{2} \vec{r}
\end{gathered}
$$

What is the significance of this?
This shows that acceleration is always pointing opposite the position - i.e. acceleration is always pointing directly toward the center of the circle as long as the speed is uniform.

Nonuniform Circular Motion

- This type of motion involves two kinds of acceleration: changing speed and changing direction - occurring at the same time.
- These changes in the velocity vector constitute components of acceleration that are radial and tangential.
- The object's acceleration vector will point "generally inward" but not exactly toward the center of the circle.

Consider an object that is moving along a circular path and gaining speed at a steady rate. The vectors are shown correct to scale and direction.

Consider an object that is moving along a circular path and gaining speed at a steady rate. The vectors are shown correct to scale and direction.

Radial Acceleration

Regardless of changes in speed, an object moving in a circle must have a component of acceleration directed toward the center of the circle:

Note: speed does not have to be constant for this to be true!

Tangential Acceleration

Increase or decrease in speed results in a component of acceleration tangent to the circle, aligned with the velocity vector

Note: this is a derivative of speed, not velocity!

An object that is moving along a circular path and decreasing speed at a constant rate would have vectors as shown here; $d v / d t$ would be negative.

