Work and Energy

I. Work

- dot product
- varying force
- II. Work-Energy Theorem
 - Kinetic Energy
- III. Potential Energy
 - Conservative Forces

IV. Machines, Power, Efficiency

	The student will be able to:	HW:
1	Define and apply the concept of work (and the joule) for	1-9
	constant or varying force and solve related problems.	
2	Define and apply kinetic energy. State and apply the work-	10 - 15
	energy theorem and solve related problems.	
3	Solve problems using conservation of mechanical energy,	16-23
	including situations involving nonconservative forces.	
4	Solve problems involving gravitational potential energy in	24 – 26
	which g is not taken to be constant.	
5	Solve problems involving work and energy for a mass	27 – 29
	attached to a spring.	
6	Define and apply the concepts of conservative force and	30-32
	potential energy and solve related problems.	
7	Define and apply the concept of power (and the watt) and	33 – 37
	solve related problems.	
8	Solve problems involving machines and efficiency.	38-40

Power

Power is the rate at which work is done (or the rate of energy transfer/transformation):

Units of measure: 1 watt = 1 joule \div 1 second W = J/s $W = kg m^2/s^3$ 1 horsepower (hp) \approx 746 W

Power

The **instantaneous power** of a particular force acting on an object equals the dot product of force and the object's velocity:

$$P = \vec{F} \cdot \vec{v}$$

This result may be derived from the definitions of work and velocity.

On an electrical device the number of watts typically indicates the power input – rate of energy usage.

Horsepower traditionally is used to quantify mechanical output – rate at which work can be done.

© Matthew W. Milligan

Simple Machines

Simple Machines

All simple machines are "force multipliers" that can make a task easier to accomplish.

Although a machine may provide an increased force it cannot violate conservation of energy.

The work (or energy) output of a machine cannot exceed the work (or energy) put into it.

Efficiency

© Matthew W. Milligan

Efficiency

Efficiency is the amount of useful output relative to the input, usually expressed as a percentage.

 $efficiency = \frac{useful \ output}{input}$