Work and Energy

I. Work

- dot product
- varying force
II. Work-Energy Theorem
- Kinetic Energy
III. Potential Energy
- Conservative Forces
IV. Machines, Power, Efficiency

	The student will be able to:	HW:
1	Define and apply the concept of work (and the joule) for constant or varying force and solve related problems.	$1-9$
2	Define and apply kinetic energy. State and apply the work energy theorem and solve related problems.	$\frac{10-15}{30}$
3	Solve problems using conservation of mechanical energy, including situations involving nonconservative forces.	$96-23$
4	Solve problems involving gravitational potential energy in which g is not taken to be constant.	$24-26$
5	Solve problems involving work and energy for a mass attached to a spring.	$27-29$
6	Define and apply the concepts of conservative force and potential energy and solve related problems.	$30-32$
7	Define and apply the concept of power (and the watt) and solve related problems.	33-37
8	Solve problems involving machines and efficiency.	$38-40$

Power

Power is the rate at which work is done (or the rate of energy transfer/transformation):

$$
P=\frac{d W}{d t}
$$

where: $W=$ work

$$
t=\text { time }
$$

$$
\begin{gathered}
\text { Units of measure: } \\
\begin{array}{l}
1 \text { watt }=1 \text { joule } \div 1 \text { second } \\
\mathrm{W}=\mathrm{J} / \mathrm{s} \\
\mathrm{~W}=\mathrm{kg} \mathrm{~m} \\
2
\end{array} \mathrm{~s}^{3} \\
1 \text { horsepower }(\mathrm{hp}) \approx 746 \mathrm{~W}
\end{gathered}
$$

Power

The instantaneous power of a particular force acting on an object equals the dot product of force and the object's velocity:

$$
P=\vec{F} \cdot \vec{v}
$$

This result may be derived from the definitions of work and velocity.

Simple Machines

Inclined Plane

Lever

Wheel and Axle

Pulley

Simple Machines

All simple machines are "force multipliers" that can make a task easier to accomplish.

Although a machine may provide an increased force it cannot violate conservation of energy.

The work (or energy) output of a machine cannot exceed the work (or energy) put into it.

Efficiency

Efficiency

Efficiency is the amount of useful output relative to the input, usually expressed as a percentage.

$$
\text { efficiency }=\frac{\text { useful output }}{\text { input }}
$$

