Magnetic Induction

I. Induction

- Faraday’s Law, Lenz's Law
II. Maxwell's equations
III.Inductance and Inductors
- design and geometry
IV.RL Circuits
- steady state, dynamic behavior
V.LC Circuits
- oscillations

	The student will be able to:	HW:
1	State and apply Faraday's Law and Lenz's Law and solve magnetic induction problems involving changing magnetic flux, and induced emf or eddy currents.	$1-16$
2	Solve problems involving basic principles of generators, including production of back emf.	$17-21$
3	State and recognize Maxwell's equations and associate each equation with its implications.	$22-23$
4	Define and calculate inductance and solve related problems including those that involve parallel or series inductors.	$24-31$
5	Analyze RL circuits in terms of the appropriate differential equation and resulting exponential functions for charge, current, voltage, etc.	$32-38$
6	Analyze LC and RLC circuits in terms of the appropriate differential equation and resulting exponential functions for charge, current, voltage, etc.	$39-41$

Maxwell' s Equations (c. 1873)

- Although Maxwell did not "discover" these equations or laws, he is credited with realizing that the four equations "summarize" electricity and magnetism.
- Maxwell did make an important "modification" to one of the equations.
- It is thought that all E \& M phenomena can be related to these equations.
- Maxwell showed that these equations allow for electromagnetic waves and derived the speed of such, giving c in terms of μ_{0} and ε_{0}.

Maxwell's Equations

$$
\begin{array}{ll}
\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\varepsilon_{0}} & \text { Gauss' s Law } \\
\oint \vec{B} \cdot d \vec{A}=0 & \begin{array}{l}
\text { Gauss' s Law for } \\
\text { Magnetic Fields }
\end{array} \\
\oint \vec{E} \cdot d \vec{\ell}=-\frac{d}{d t} \int \vec{B} \cdot d \vec{A} \quad \text { Faraday' s Law } \\
\oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I & \text { Ampere' s Law }
\end{array}
$$

Maxwell's Equations

$$
\left.\begin{array}{l}
\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\varepsilon_{0}} \\
\oint \vec{B} \cdot d \vec{A}=0
\end{array} \begin{array}{c}
\text { Maxwell's } \\
\text { modification to } \\
\text { Ampere's Law }
\end{array}\right]
$$

Ampere-Maxwell Law

$$
\oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{d}{d t} \int \vec{E} \cdot d \vec{A}
$$

This quantity is known as the "displacement current".

Ampere-Maxwell Law

$$
\oint \vec{B} \cdot d \vec{\ell}=\mu_{0}\left(I+\varepsilon_{0} \frac{d}{d t} \int \vec{E} \cdot d \bar{A}\right)
$$

This quantity is dimensionally equivalent to a "current" measureable in amperes.

Thought Experiment: Charging a Capacitor

Wouldn' t there have to be a magnetic field here?
Not according to Ampere's Law!

Thought Experiment: Charging a Capacitor

Wouldn' t there have to be a magnetic field here?
Not according to Ampere' s Law! $\oint \vec{B} \cdot d \vec{\ell}=0$?!

Thought Experiment: Charging a Capacitor

Maxwell resolved the problem:
$\oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I$

Thought Experiment: Charging a Capacitor

Maxwell resolved the problem:

$$
\oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{d}{d t} \int \vec{E} \cdot d \vec{A}
$$

Mutual induction of electric and

 y magnetic fields results in production of an electromagnetic wave!z

An electromagnetic disturbance propagates at speed $v . .$.

$\longrightarrow v=\frac{x}{t}$

An electromagnetic disturbance propagates at speed $v . .$.

An electromagnetic disturbance propagates at speed $v . .$.

An electromagnetic disturbance

 propagates at speed $v . .$.

$$
\oint \vec{E} \cdot d \bar{\ell}=-\frac{d}{d t} \int \bar{B} \cdot d \bar{A}
$$

© Matthew W. Milligan

$$
\oint \vec{B} \cdot d \bar{\ell}=\mu_{0} \varepsilon_{0} \frac{d}{d t} \int \vec{E} \cdot d \bar{A}
$$

$$
\begin{array}{clrl}
E & =A \sin (k x+\omega t) & B & =C \sin (k x+\omega t) \\
\frac{d E}{d t} & =A \omega \cos (k x+\omega t) & \frac{d B}{d t} & =C \omega \cos (k x+\omega t) \\
\frac{d E}{d x} & =A k \cos (k x+\omega t) & \frac{d B}{d x} & =C k \cos (k x+\omega t) \\
\frac{d E}{d x} & =-\frac{d B}{d t} \\
\frac{d B}{d x} & =-\mu_{0} \varepsilon_{0} \frac{d E}{d t}
\end{array}
$$

$$
\begin{array}{rlrl}
E & =A \sin (k x+\omega t) & B & =C \sin (k x+\omega t) \\
\frac{d E}{d t} & =A \omega \cos (k x+\omega t) & \frac{d B}{d t} & =C \omega \cos (k x+\omega t) \\
\frac{d E}{d x} & =A k \cos (k x+\omega t) & \frac{d B}{d x} & =C k \cos (k x+\omega t) \\
\frac{d E}{d x} & =-\frac{d B}{d t} \\
A k \cos (k x+\omega t) & =-C \omega \cos (k x+\omega t) \\
\frac{d B}{d x} & =-\mu_{0} \varepsilon_{0} \frac{d E}{d t} \\
C k \cos (k x+\omega t) & =-\mu_{0} \varepsilon_{0} A \omega \cos (k x+\omega t)
\end{array}
$$

$$
\begin{aligned}
& C k \cos (k x+\omega t)=-\mu_{0} \varepsilon_{0} A \omega \cos (k x+\omega t) \\
& A k \cos (k x+\omega t)=-C \omega \cos (k x+\omega t)
\end{aligned}
$$

$$
\frac{\ell k \cos (k x+\omega t)}{-\ell \omega \cos (k+\omega t)}=\frac{-\mu_{0} \varepsilon_{0} X \omega \cos (k+\omega t)}{A k \cos (k t+\omega t)}
$$

$\ell k \cos (k x+\omega t)=-\mu_{0} \varepsilon_{0} X \omega \cos (k x+\omega t)$
 $-\ell \omega \cos (k+\omega t)=A k \cos (k t+\omega t)$

$$
\begin{aligned}
\frac{k}{\omega} & =\mu_{0} \varepsilon_{0} \frac{\omega}{k} \\
\frac{1}{\mu_{0} \varepsilon_{0}} & =\frac{\omega^{2}}{k^{2}} \\
\frac{\omega}{k} & =\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}
\end{aligned}
$$

$$
\begin{gathered}
B=C \sin (k x+\omega t) \\
\frac{d B}{d t}=C \omega \cos (k x+\omega t) \\
\frac{d B}{d x}=C k \cos (k x+\omega t) \\
v=\frac{d x}{d t}=\frac{d x}{d B} \cdot \frac{d B}{d t} \\
v=\frac{1}{C k \cos (k x+\omega t)} \cdot C \omega \cos (k x+\omega t) \\
v=\frac{\omega}{k}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=299792458 \mathrm{~m} / \mathrm{s} \\
\text { (the speed of light!) }
\end{gathered}
$$

