Advanced Kinematics

I. Vector addition/subtraction
II. Components
III. Relative Velocity
IV. Projectile Motion
V. Use of Calculus
(nonuniform acceleration)
VI. Parametric Equations

	The student will be able to:	PW:
1	Calculate the components of a vector given its magnitude and direction.	
2	Calculate the magnitude and direction of a vector given its components.	$3-4$
3	Use vector components as a means of analyzing/solving 2-D motion problems.	$5-6$
4	Add or subtract vectors analytically (using trigonometric calculations).	$7-9$
5	Use vector addition or subtraction as a means of solving relative motion problems.	$10-15$
6	State the horizontal and vertical relations for projectile motion and us the same to solve projectile problems.	$16-24$
7	Use derivatives to determine speed, velocity, or acceleration and solve for extrema and/or zeros.	$25-27$
8	Use integrals to determine distance, displacement, change in speed or velocity and solve for functions thereof given initial conditions.	$28-31$
9	Solve problems involving parametric equations that describe motion components	$32-34$

Use of Calculus in Kinematics

- An instantaneous rate of change can be defined mathematically as a limit.
- In calculus it is shown that this type of limit is equivalent to a "derivative".
- By definition position, velocity, and acceleration are functions of time that are always related by the rules of derivatives.

Instantaneous Velocity and Acceleration

$$
\left.\begin{array}{rl}
\vec{v} & =\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta \vec{r}}{\Delta t}\right) \\
\vec{a} & =\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta \vec{v}}{\Delta t}\right)
\end{array}\right\} \text { Awkward! }
$$

Instantaneous Velocity and Acceleration

Instantaneous Velocity and Acceleration

The derivative of an object' s position with respect to time is the object' s velocity.
The derivative of an object' s velocity with respect to time is the object' s
acceleration.

Instantaneous Speed

The derivative of an object's distance with respect to time is the object's speed.

Note: $l=$ distance

Special Case - One-dimensional Motion

- The derivatives just given apply to any and all types of motions.
- However it is easiest to understand and apply to an object moving in one-dimension.
- In this special case position is simply a coordinate on a number line - typically " x ".
- Directions of vectors are represented by $+/-$
- Speed is the absolute value of velocity.

Instantaneous Velocity and Acceleration

For linear motion with position x along the x-axis, instantaneous velocity v and acceleration a :

$$
a=\frac{d v}{d t}
$$

For convenience the vector symbols are often omitted. But the quantities are still vectors and the sign (+/-) of the quantity equates with direction.

Velocity and Acceleration in 3-D Space

let position, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$

$$
\vec{v}=\frac{d \stackrel{\rightharpoonup}{r}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}
$$

$$
\stackrel{\rightharpoonup}{a}=\frac{d \stackrel{\rightharpoonup}{v}}{d t}=\frac{d^{2} x}{d t^{2}} \hat{i}+\frac{d^{2} y}{d t^{2}} \hat{j}+\frac{d^{2} z}{d t^{2}} \hat{k}
$$

Components of vector rates are derivatives of components!

