
Magnetostatics 
I.  Field Basics – units, poles 

II. Magnetic Force on Charge 
  Mass Spectrometer 
  Cyclotron 

III. Magnetic Force on Current 
  Motors and Meters 

IV. Sources of Magnetic Fields 
  Biot-Savart Law 
  Ampere’s Law 
  Solenoids 
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The student will be able to: HW: 

1 Define and illustrate the basic properties of magnetic fields and 
permanent magnets:  field lines, north and south poles, magnetic 
compasses, Earth’s magnetic field.  

1 – 2 

2 Solve problems relating magnetic force to the motion of a charged 
particle through a magnetic field, such as that found in a mass 
spectrometer. 

3 – 10 

3 Solve problems involving forces on a current carrying wire in a 
magnetic field and torque on a current carrying loop of wire in a 
magnetic field, such as that found in a motor. 

11 – 18 

4 State and apply the Biot-Savart Law and solve such problems that 
relate a magnetic field to the current that produced it. 

19 – 24 

5 State and apply Ampere’s Law and Gauss’s Law for magnetic 
fields and solve related problems such as those involving parallel 
wires, solenoids, and toroids. 

25 – 40 
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Gauss’s Law for Magnetic Fields 
For any arbitrary closed surface: 

 !
B ⋅d
!
A = 0"∫

B  = magnetic field 
A  = area of the surface  

 (normal vector) 
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Because there are no point sources for magnetic fields, the 
field lines always form continuous loops.  Any magnetic 
field line entering a closed surface will at some point exit 
that surface so that the net flux is zero.  The closed surface 
can contain magnetic elements are not, it doesn’t matter! 



Ampere’s Law 
For any arbitrary open surface: 

 
!
B ⋅d
!
ℓ = µ0I!∫

B  = magnetic field 
l   = length of perimeter of the surface 
µ0 = permeability of free space 
I   = net current passing through the surface 

note: direction of l and sign of I determined  
 by right hand rule 
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dl 

I  would be 
positive by RHR 
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The light blue surface is “pierced” by the current I.  In 
Ampere’s Law, dℓ is an incremental length of a path along 
the perimeter of the surface.  Choose a direction for dℓ, 
curl fingers of right hand in that direction, thumb points in 
direction of positive current “enclosed” by the path. 

I 

!
B ⋅d
!
ℓ = µ0I!∫

B 



I 

dl 

I  would be 
negative by RHR 
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Exact same situation as before but now take dℓ to point 
oppositely.  This time the right hand rule shows the current 
to be negative for Ampere’s Law.  The surface can be real 
or imaginary.  Only currents passing through this surface 
are included. 

!
B ⋅d
!
ℓ = µ0I!∫

B 



I1 

dl 
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If there is more than one current passing through the 
“Amperian” surface then the “I” in Ampere’s Law is 
the summation of all current, some of which might be 
negative as in this case. 

!
B ⋅d
!
ℓ = µ0I!∫

B 

I2 

I = I1 + I2 
I1 = negative 
I2 = positive 



I1 

dl 
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Here there is a current, I2, which comes near but does not 
pass through the open surface.  In that sense it is not 
“contained” and should not be included in Ampere’s Law.  
This is similar to whether or not charge is located inside a 
closed surface when using Gauss’s Law for electric fields. 

!
B ⋅d
!
ℓ = µ0I!∫

B I2 
I = I1 

I1 = positive 
I2 = excluded 



I 
B B = µ0I

2πr

r 

B(2πr) = µ0I 
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dl 

!
B ⋅d
!
ℓ = µ0I!∫

Ampere’s Law applied to an infinite linear current:  
Choose a circular surface along which the field is uniform.  

The integral simplifies to field times circumference. 



I 

B 

B = µ0I
2πr

r 

Magnetic Field of “infinite” Linear Current 

B = magnetic field strength 
I = current (source of B) 
r = perpendicular distance from I 
µ0 = permeability constant	 © Matthew W. Milligan 



I 
B 

B = µ0I
2πr

r 

µ0 = 4π×10−7 N/A2 

The constant µ0 in this equation is known as the 
magnetic permeability of free space – applies to 
a vacuum or essentially the same for air. © Matthew W. Milligan 

Result is the same as found 
with Biot-Savart Law 
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I 

B = µ0I
2πr

r 

B 

© Matthew W. Milligan 



B 
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Cross Section of Current Carrying Wire 

I 



B 
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I 

Ampere’s Law is here applied to points inside a current 
carrying wire.  Notice that only part of the current is 

within the perimeter of the chosen surface.  This 
solution assumes uniform current density. 

B(2πr) = µ0I(r/R)2 

r R 

!
B ⋅d
!
ℓ = µ0I!∫

µ0Ir 
2πR2 B = r ≤ R 

dl 



Magnetic Field – Antiparallel Currents 

Credit: Geek3, Wikipedia 
The field shown here is the net field of two currents… 



Magnetic Field – Antiparallel Currents 

Credit: Geek3, Wikipedia 

B1 B2 

I1 I2 

Bnet 

Magnetic fields follow the superposition principle! 



Draw a vector diagram illustrating superposition at each of 
four locations, with appropriate relative lengths of the arrows: 
 

    1 
            2 

 
 
 

       3   4 
I I 
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Bnet 



Magnetic Field – Parallel Currents 

Credit: Geek3, Wikipedia 

Bnet 



Magnetic Field – Antiparallel Currents 

Credit: Geek3, Wikipedia 



Magnetic Field – Parallel Currents 

Credit: Geek3, Wikipedia 
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I1 

B1 =
µ0I1
2πr

F12 = I2LB1

F12 = I2L
µ0I1
2πr

F12
L
=
µ0I1I2
2πr

r 

B2 
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I2 

B1 
F12 F21 

Parallel Current Carrying Wires 

B2 =
µ0I2
2πr

F21 = I1LB2

F21 = I1L
µ0I2
2πr

F21
L
=
µ0I1I2
2πr

F
L
=
µ0I1I2
2πr

Current 1 creates a magnetic field that 
affects current 2.  Current 2 creates a 
magnetic field that affects current 1: 

Force per length, parallel wires 
Opposite currents repel,  

like currents attract! 



Credit: Geek3, Wikipedia 

Magnetic Field – Solenoid 



Credit: Geek3, Wikipedia 

Magnetic Field – Solenoid 

 S                                             N 



Credit: Geek3, Wikipedia 

Magnetic Field – Solenoid 



Magnetic Field – Ideal “Infinite” Solenoid 

I 

nIB 0µ= L
NIB 0µ=

B = field anywhere inside (uniform) 
n = number of turns per length 
N = number of turns (or coils) of wire 
L = length of cylinder 
I = current 

B 

or 
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Ideal “Infinite” Solenoid – Derivation of B 

I 

B 

!
B ⋅d
!
A = 0"∫

B1 
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Suppose there were a field component B1 pointing radially away from 
the solenoid.  The surrounding cylindrical cylinder would have a 
magnetic flux if that were the case – a violation of Gauss’s Law for 
magnetic fields.  Therefore B1 cannot exist and must equal zero. 

dA 



Ideal “Infinite” Solenoid – Derivation of B 

I 

B 

!
B ⋅d
!
A = 0"∫
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Suppose there were a field component B2 outside the solenoid, parallel 
to its axis.  This would not be a violation of Gauss’s Law for magnetic 
fields because the net magnetic flux would be zero.  Notice the same 
can be said for the field inside the solenoid. 

B2 

dA dA 



dℓ 

Ideal “Infinite” Solenoid – Derivation of B 

I 

B 
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However, the field B2 is inconsistent with Ampere’s Law.  Applied to 
the rectangle shown, the current I is zero.  Only if B2 is uniform “to 
infinity” would Bdℓ at the top of any such rectangle be equal and 
opposite sign to Bdℓ at the bottom.  This is illogical!   
So B2 cannot exist and must equal zero. 

B2 

!
B ⋅d
!
ℓ = µ0I!∫

(The field inside a real solenoid must loop around on the outside and 
B2 in fact exists, though it is negligible compared to the field inside.)  

dℓ 



Ideal “Infinite” Solenoid – Derivation of B 

I 

B 
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Suppose there were a field component B3 in a concentric circle 
surrounding the solenoid.  If the current is idealized as a “sheet” there 
is zero current passing through the open surface that is bounded by B3.  
In that case B3 must be zero to satisfy Ampere’s Law.  (The coil of 
wire in a real solenoid will pass through this surface and B3 may in 
fact be nonzero – but still negligible, especially compared to the field 
inside the solenoid.) 

!
B ⋅d
!
ℓ = µ0I!∫

B3 

dℓ 



I 

B 
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dℓ 

dℓ 

dℓ 

dℓ 

L h 

Ideal “Infinite” Solenoid – Derivation of B 
Having established that the field anywhere 
outside the solenoid is zero, find the field 
inside by analyzing the rectangle shown: 
 
The dot product B·dℓ is zero along all  
sides of the rectangle except the bottom! 

!
B ⋅d
!
ℓ = µ0I!∫

BL = µ0 NI( )

B = µ0NI
L

= µ0nI

Note that the bottom of the rectangle 
could be anywhere inside the solenoid 
and the analysis would be the same.  
Therefore the magnetic field is 
uniform throughout its interior. 

B = 0 



Magnetic Field – Finite Solenoid 

dI 

dB 

θ 

R
dIdB
2
cos30 θµ

=

R 

(from HW) 
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Magnetic Field – Finite Solenoid 

dI 

dB 
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Magnetic Field – Finite Solenoid 

dI 

dB 
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Magnetic Field – Finite Solenoid 

B 

θ2 θ1 

( )12
0 sinsin
2

θθ
µ

−=
nIB

θ = 0 
B = field at a point along the axis only 
n = number of turns per length 
θ = angle shown, may be positive or negative  
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Magnetic Field – Toroid 

A toroid is similar to a solenoid but with a torus shape.  
However, Ampere’s Law reveals the field is not uniform 
but rather inversely proportional to radius shown above! 

I 
B 

r 
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