Magnetostatics

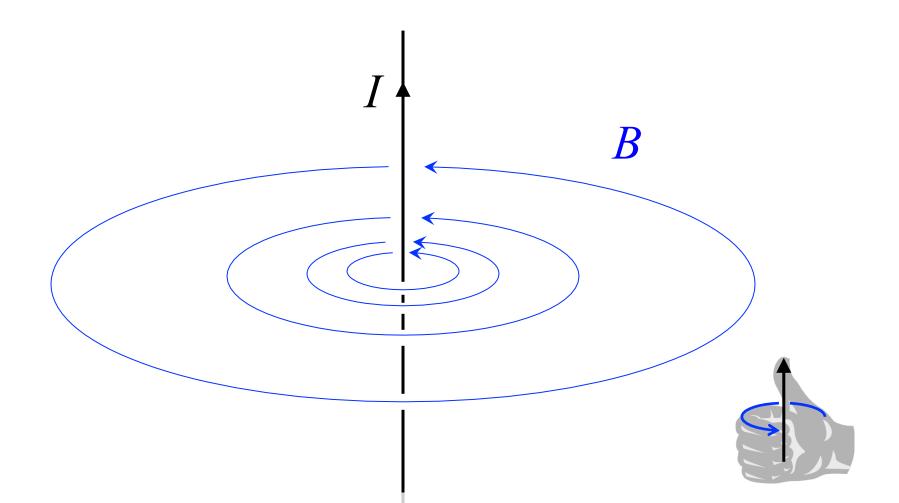
I. Field Basics – units, poles

II. Magnetic Force on Charge Mass Spectrometer Cyclotron

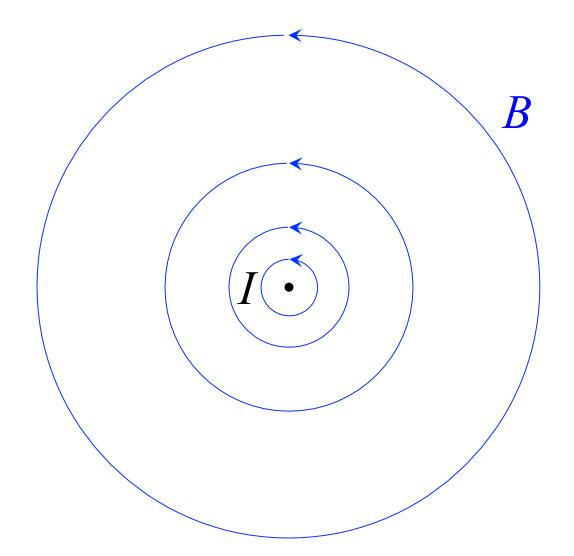
III.Magnetic Force on Current Motors and Meters

IV.Sources of Magnetic Fields Biot-Savart Law Ampere's Law Solenoids

	The student will be able to:	HW:
1	Define and illustrate the basic properties of magnetic fields and permanent magnets: field lines, north and south poles, magnetic compasses, Earth's magnetic field.	1-2
2	Solve problems relating magnetic force to the motion of a charged particle through a magnetic field, such as that found in a mass spectrometer.	3 - 10
3	Solve problems involving forces on a current carrying wire in a magnetic field and torque on a current carrying loop of wire in a magnetic field, such as that found in a motor.	11 – 18
4	State and apply the Biot-Savart Law and solve such problems that relate a magnetic field to the current that produced it.	19 – 24
5	State and apply Ampere's Law and Gauss's Law for magnetic fields and solve related problems such as those involving parallel wires, solenoids, and toroids.	25-40

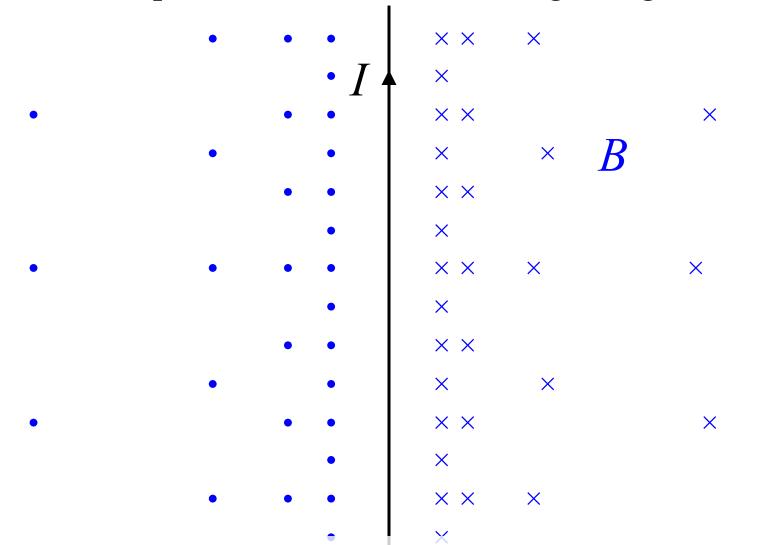


The magnetic field around a long straight current consists of concentric circles, seen here at an oblique angle. The direction of the field is given by a right hand rule: thumb in direction of current, fingers curl and point in direction of the field.



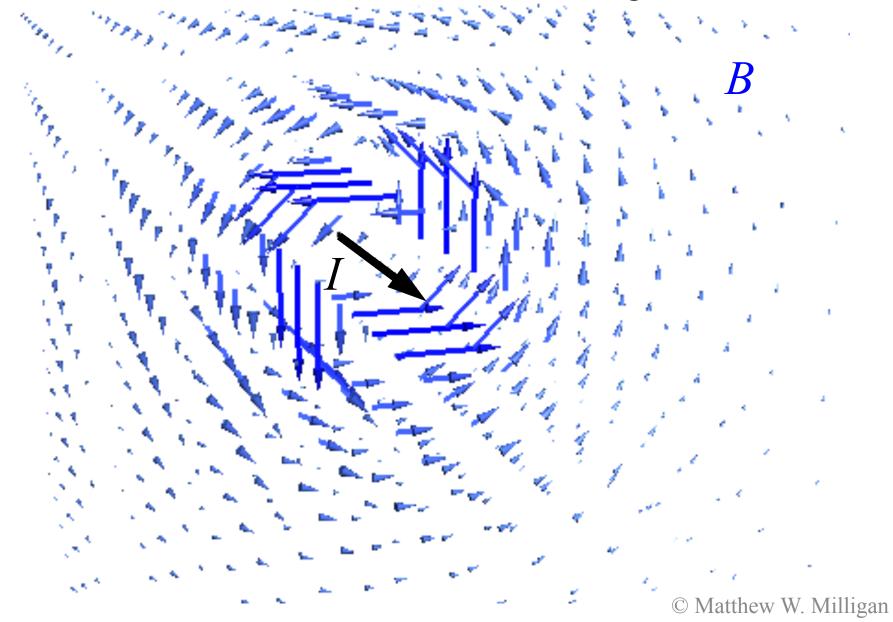
Same field seen "from above" such that the long straight current is "out of the page" – directly toward the eye.

A view of a plane that *contains* the long straight current...



... field points "into the page" (×) on one side of the current and "out of the page" (•) on the other side.

3-D field vectors near a "current segment"



Biot-Savart Law

The magnetic field produced by a current carrying wire:

$$\vec{\mathbf{B}} = \int \frac{\mu_0 I d\vec{\ell} \times \hat{r}}{4\pi r^2}$$

- I = current
- $d\ell$ = incremental length of wire
- r = position relative to wire
- μ_0 = permeability of free space (4 $\pi \times 10^{-7}$ N/A²)

Biot-Savart Law Example

Find the magnetic field at a particular position near a current carrying wire...

X

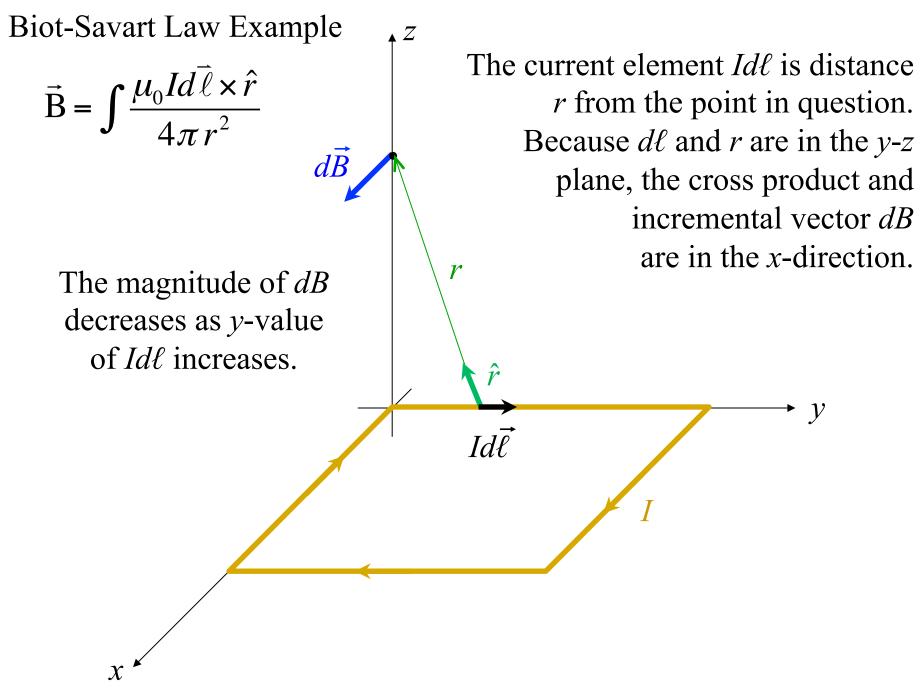
 $\bullet B = ?$

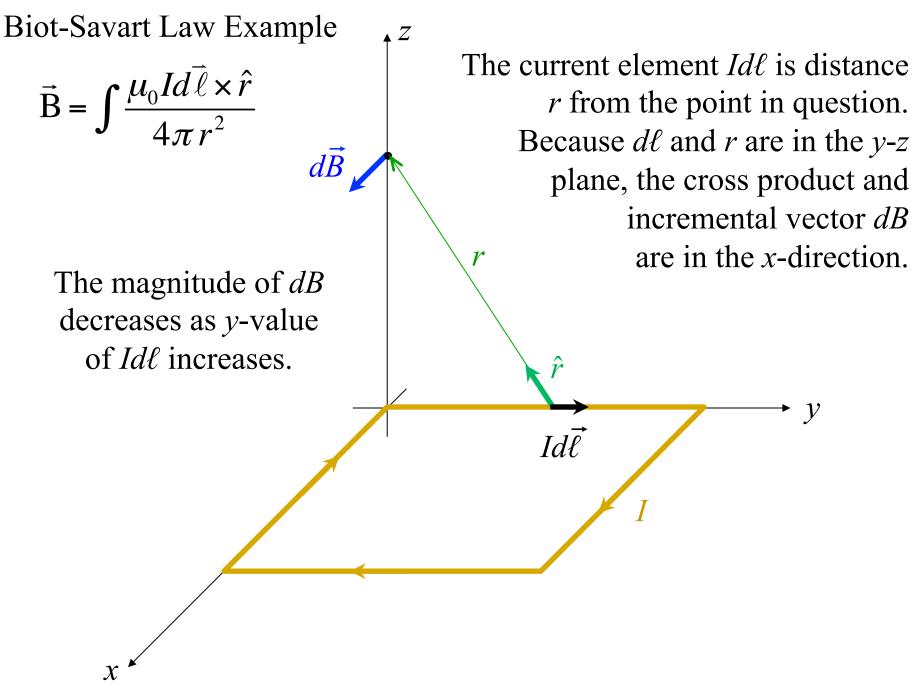
Z

The diagrams illustrate vectors and quantities of the Biot-Savart Law for finding the field at a point on the *z*-axis near a current loop in the *x*-*y* plane...

> current in a rectangular wire loop

y





Z

 $d\vec{B}$

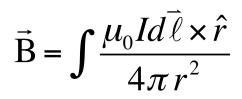
 $Idar{\ell}$

 $d\vec{B}$

r

 $\hat{\boldsymbol{r}}$

Idł



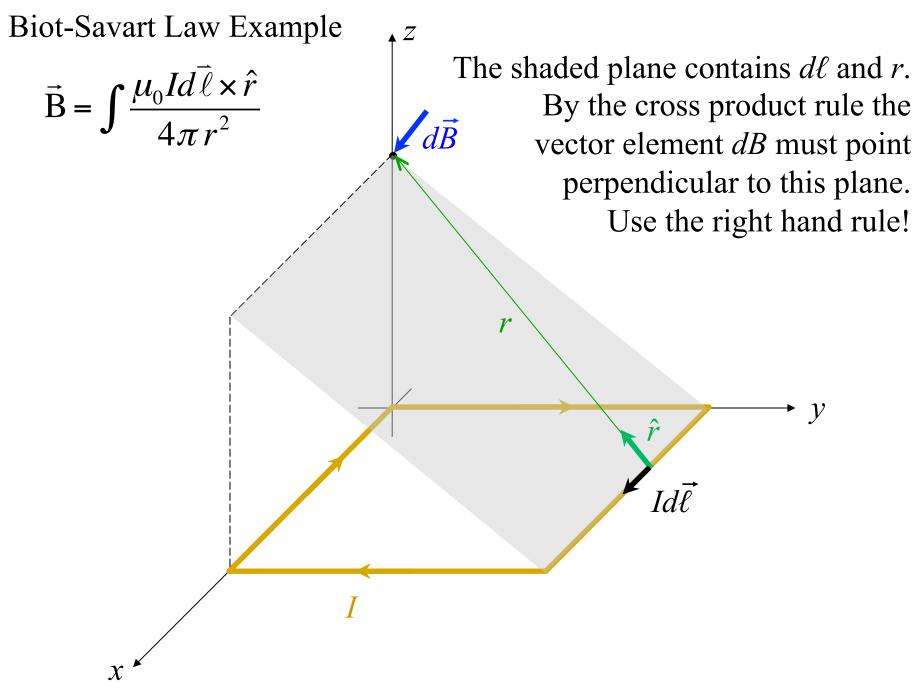
For current along the x-axis the cross product of $d\ell$ and r yields vector increments dBthat are in the y-direction.

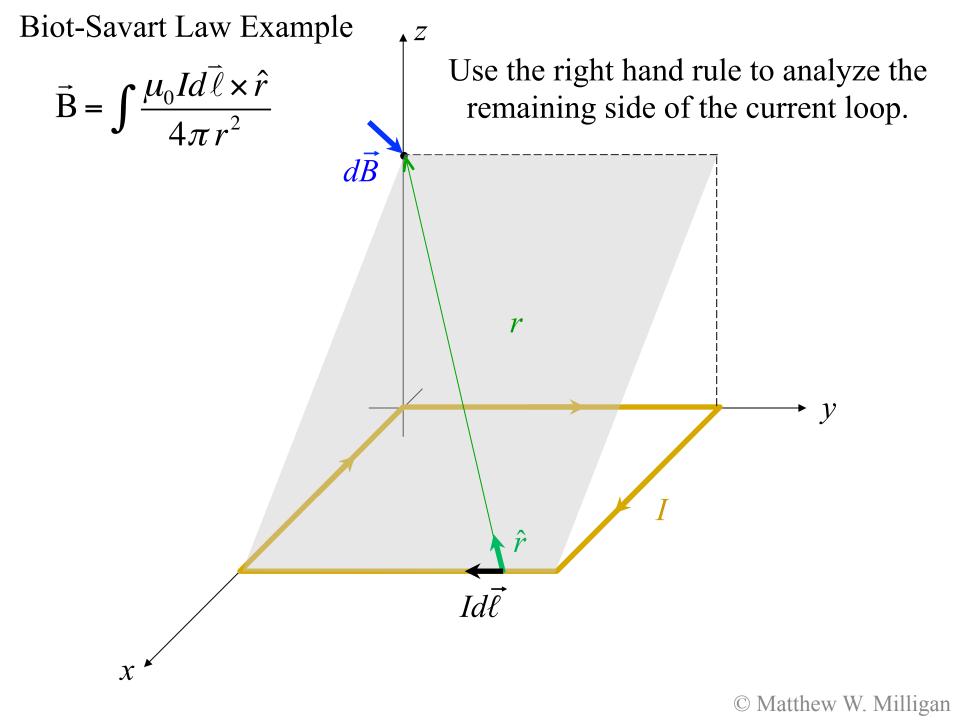
X

Note: the unit vector \hat{r} always points from $Id\ell$ toward the point being evaluated for B. The magnitude of \hat{r} is 1 and it has no units (like any other unit vector).

© Matthew W. Milligan

 \mathcal{V}





Biot-Savart Law Example

Z

r

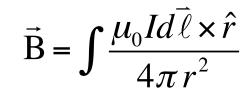
Idl

î

Idł

 $d\vec{B}$

 $Id\overline{\ell}$



X

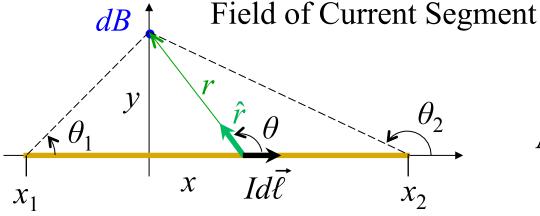
To find the net magnetic field at the point indicated on the *z*-axis would require integrals for each side of the wire loop and then a three-dimensional vector sum of the four results! Yikes!

Each side of the wire loop is a "segment of current"...

Idl

© Matthew W. Milligan

y



Recall how a cross product works: The magnitude of $d\ell$ is dxand the magnitude of \hat{r} is 1:

So, the cross product has magnitude:

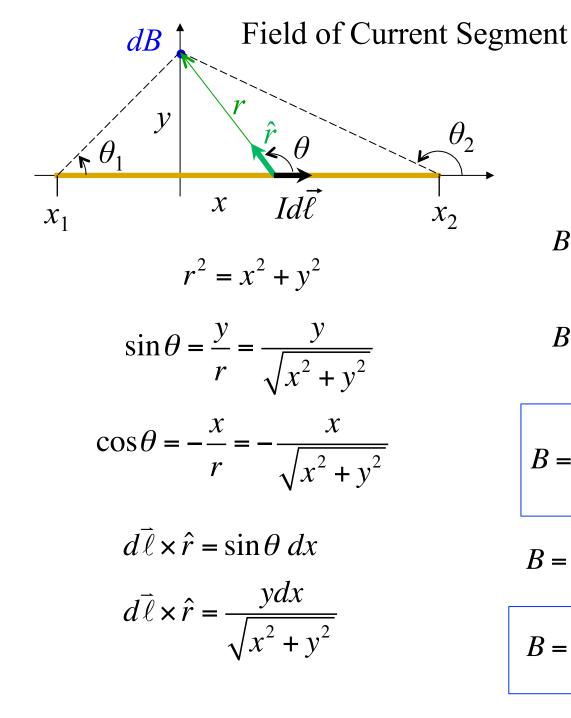
Then, it is necessary to choose one variable!

Put sin θ in terms of x or put dx in terms of $d\theta$.

$$\vec{\mathbf{B}} = \int \frac{\mu_0 I d\vec{\ell} \times \hat{r}}{4\pi r^2}$$

A key part of Biot-Savart is the **cross product**!

 $\overline{R} \times \overline{S} = RS \sin \theta$ $d\bar{\ell} \times \hat{r} = (dx)(1)\sin\theta$ $d\vec{\ell} \times \hat{r} = \sin\theta \, dx$ $d\vec{\ell} \times \hat{r} = \sin\theta \, dx$ $d\vec{\ell} \times \hat{r} = \sin\theta \, dx$ $d\vec{\ell} \times \hat{r} = \frac{y}{\sqrt{x^2 + y^2}} dx \quad d\vec{\ell} \times \hat{r} = \sin\theta \frac{yd\theta}{\sin^2\theta}$ $d\vec{\ell} \times \hat{r} = \frac{yd\theta}{\sin\theta}$ $d\vec{\ell} \times \hat{r} = \frac{ydx}{\sqrt{x^2 + y^2}}$ © Matthew W. Milligan



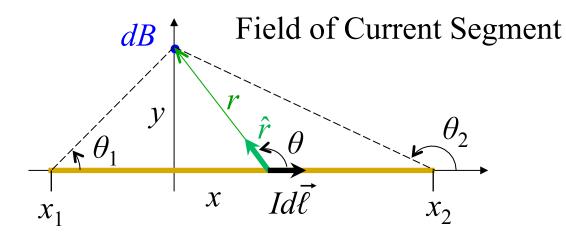
$$\vec{B} = \int \frac{\mu_0 I d\vec{\ell} \times \hat{r}}{4\pi r^2}$$

Integral in terms of *x*:

$$B = \int \frac{\mu_0 I}{4\pi (x^2 + y^2)} \frac{y dx}{\sqrt{x^2 + y^2}}$$
$$B = \int_{x_1}^{x_2} \frac{\mu_0 I y dx}{4\pi (x^2 + y^2)^{\frac{3}{2}}}$$
$$B = \frac{\mu_0 I}{4\pi y} \left(\frac{x_2}{\sqrt{x_2^2 + y^2}} - \frac{x_1}{\sqrt{x_1^2 + y^2}} \right)$$

$$B = \frac{\mu_0 I}{4\pi y} \left(-\cos\theta_2 - \left(-\cos\theta_1 \right) \right)$$

$$B = \frac{\mu_0 I}{4\pi y} \left(\cos\theta_1 - \cos\theta_2\right)$$



$$\vec{\mathbf{B}} = \int \frac{\mu_0 I d\vec{\ell} \times \hat{r}}{4\pi r^2}$$

Integral in terms of θ :

$$\sin\theta = \frac{y}{r}$$

$$r = \frac{y}{\sin\theta}$$

$$\tan \theta = -\frac{y}{x}$$
$$x = -\frac{y}{\tan \theta}$$

$$\frac{dx}{d\theta} = \frac{y}{\sin^2 \theta}$$
$$dx = \frac{yd\theta}{\sin^2 \theta}$$

 $d\bar{\ell} \times \hat{r} = \sin\theta \, dx$

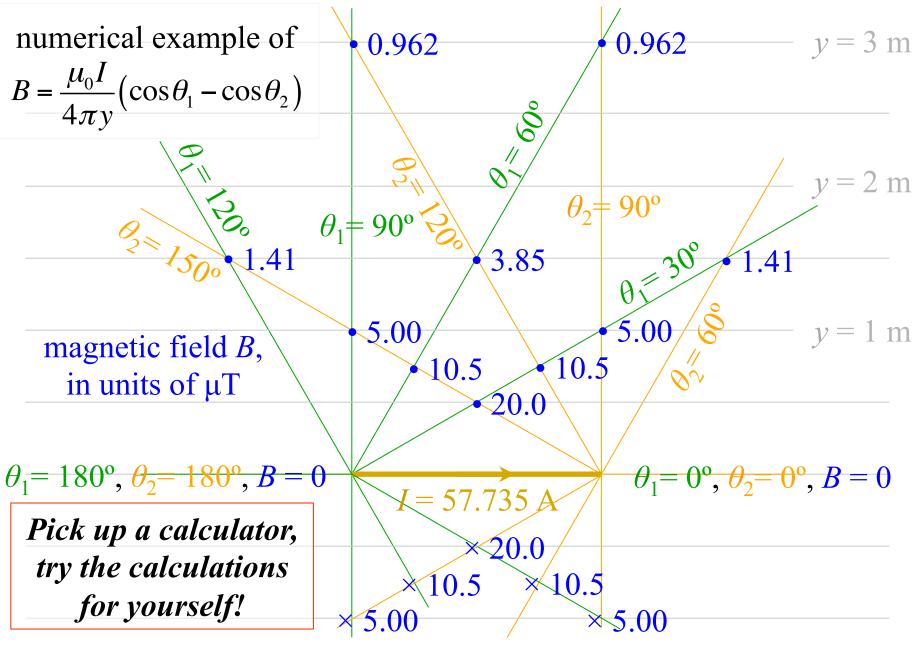
 $d\vec{\ell} \times \hat{r} = \frac{yd\theta}{\sin\theta}$

 $d\vec{\ell} \times \hat{r} = \sin\theta \frac{yd\theta}{\sin^2\theta}$

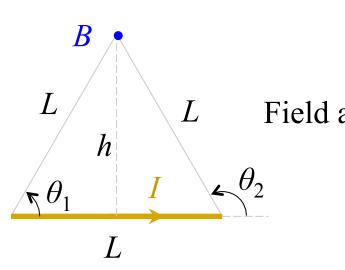
$$B = \int \frac{\mu_0 I}{4\pi \left(\frac{y}{\sin\theta}\right)^2} \frac{yd\theta}{\sin\theta}$$
$$B = \int_{\theta_1}^{\theta_2} \frac{\mu_0 I \sin\theta d\theta}{4\pi y}$$

$$B = \frac{\mu_0 I}{4\pi y} \left(\cos\theta_1 - \cos\theta_2\right)$$

Field of Current Segment L = 1.732 m, I = 57.735 A



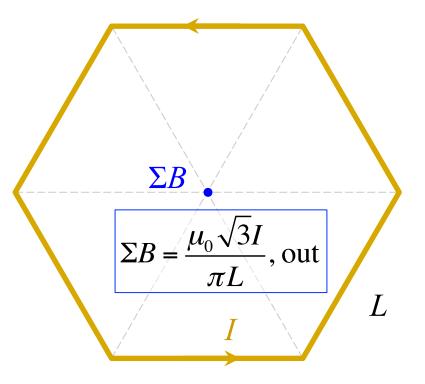
Consider an equilateral triangle, sides length *L*, with current *I* on one side:

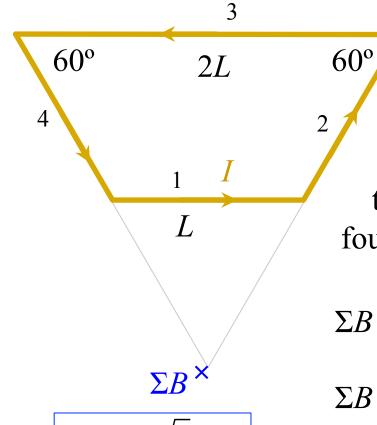


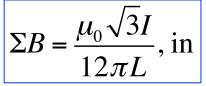
$$B = \frac{\mu_0 I}{4\pi y} \left(\cos \theta_1 - \cos \theta_2 \right) \quad \theta_1 = 60^\circ, \ \theta_2 = 120^\circ$$
$$B = \frac{\mu_0 I}{4\pi h} \left(\frac{1}{2} - \left(-\frac{1}{2} \right) \right) = \frac{\mu_0 I}{4\pi h} = \frac{\mu_0 \sqrt{3}I}{6\pi L}$$
d at the vertex:
$$B = \frac{\mu_0 \sqrt{3}I}{6\pi L} , \text{ out of page}$$

Superposition of the above gives the magnetic field at the center of a hexagonal loop of current:

$$\Sigma B = 6 \left(\frac{\mu_0 \sqrt{3}I}{6\pi L} \right) = \frac{\mu_0 \sqrt{3}I}{\pi L}$$







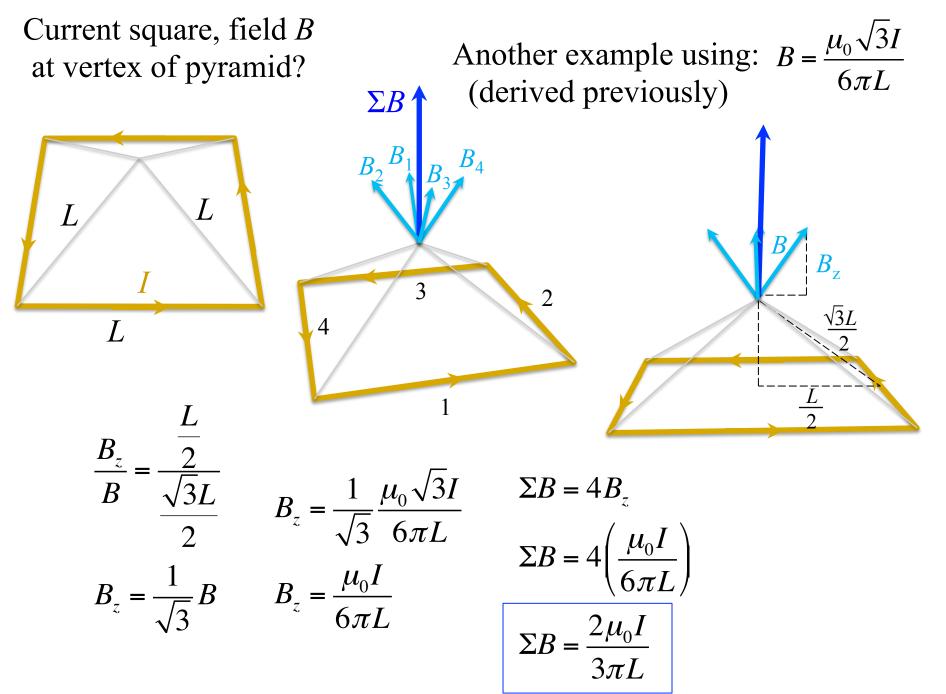
Another example using: $B = \frac{\mu_0 \sqrt{3I}}{6\pi L}$ (derived previous page)

The magnetic field at the vertex of the larger equilateral triangle is the superposition of the fields from the four sides of the trapezoidal current loop.

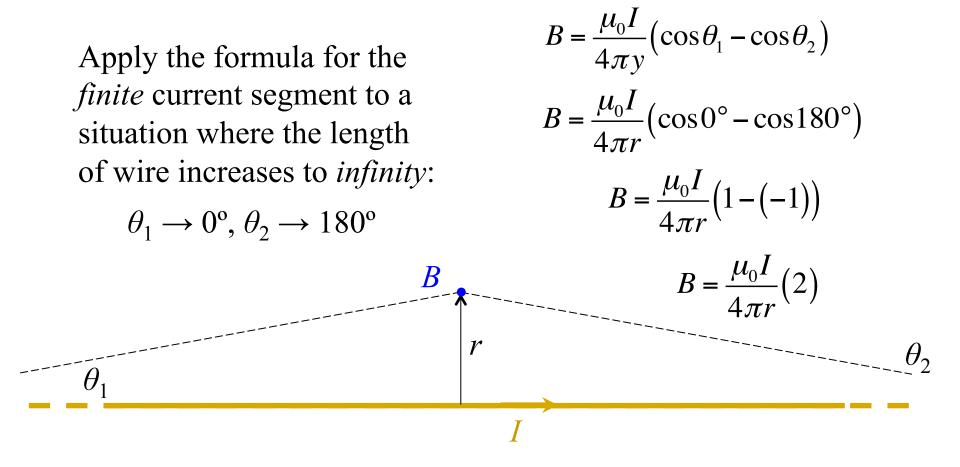
$$\Sigma B = B_1 + B_2 + B_3 + B_4$$

$$\Sigma B = B_1 + 0 + B_3 + 0$$

$$\Sigma B = \left(\frac{\mu_0 \sqrt{3}I}{6\pi L}, \text{ in}\right) + \left(\frac{\mu_0 \sqrt{3}I}{6\pi (2L)}, \text{ out}\right) = \frac{\mu_0 \sqrt{3}I}{12\pi L}, \text{ in}$$

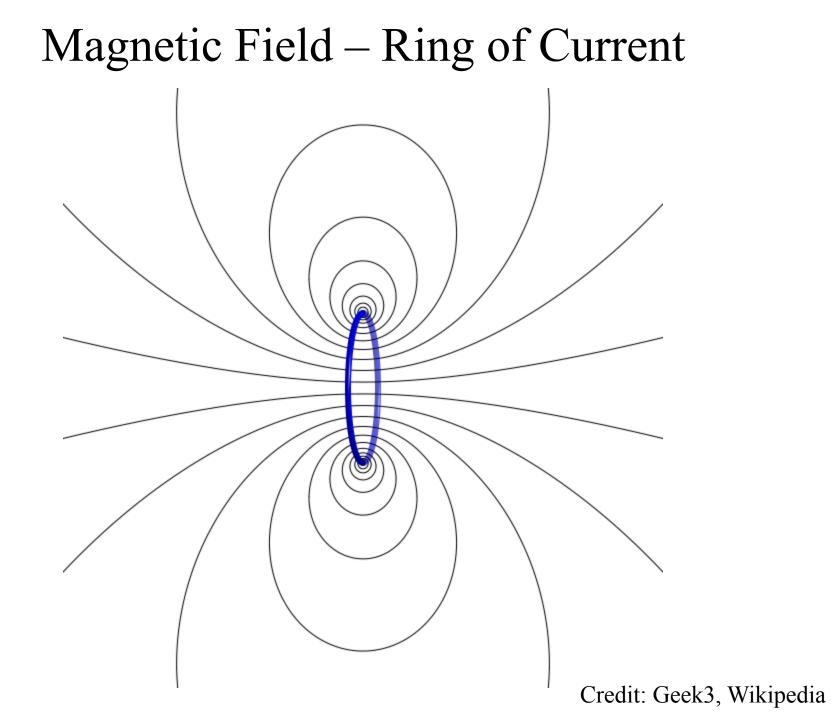


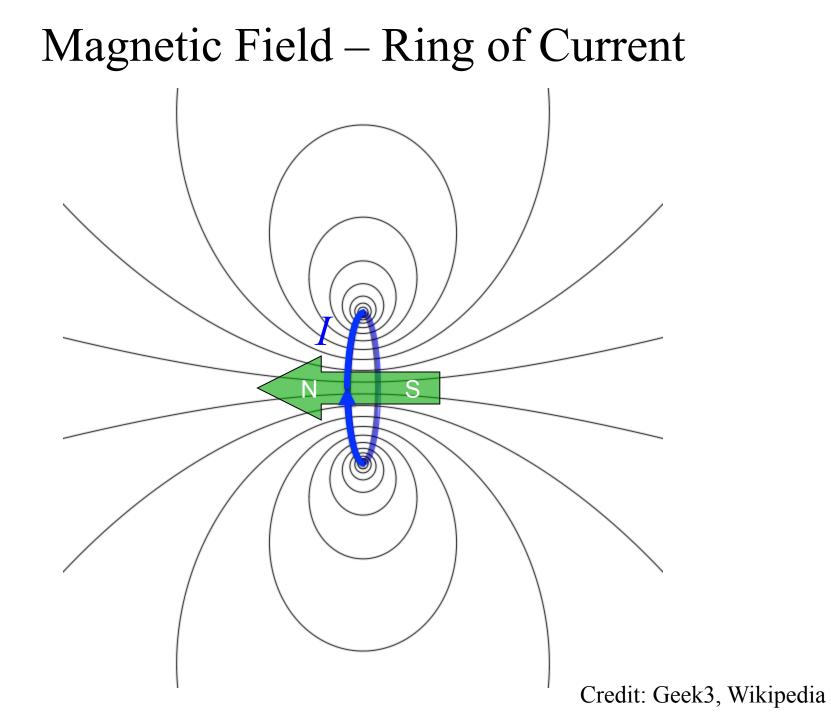
Field of "Infinite" Linear Current

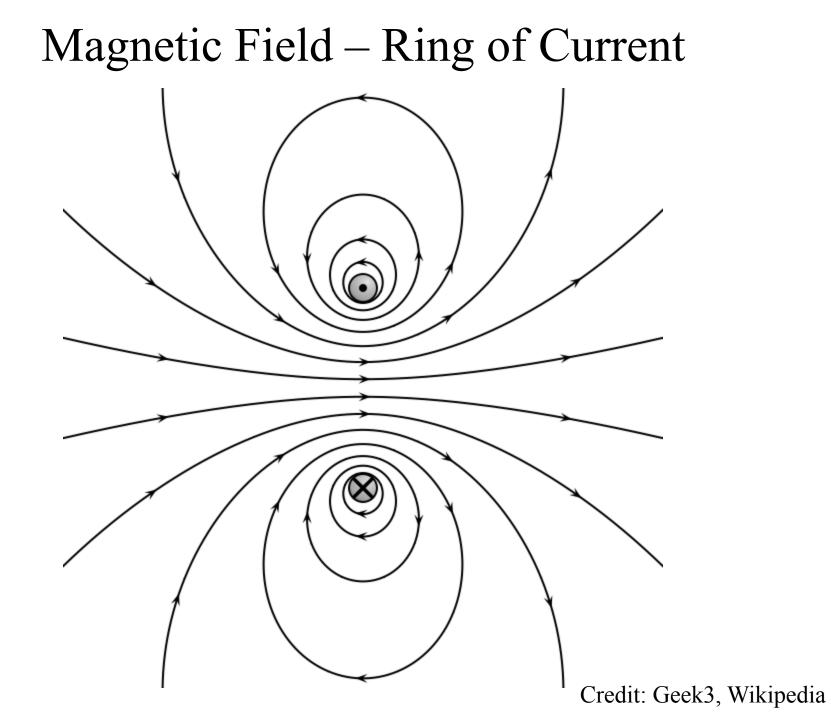


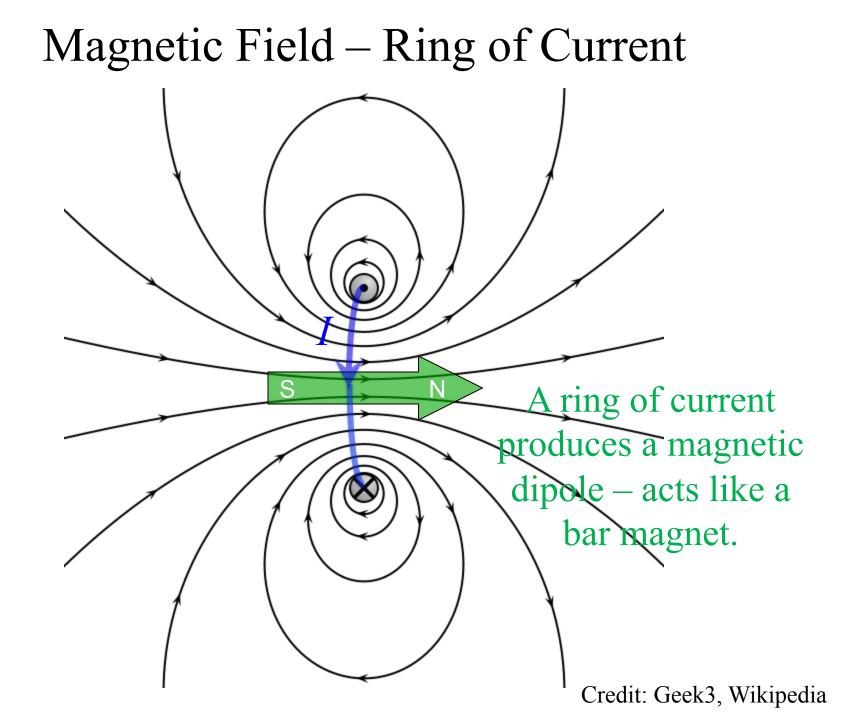
The resulting formula is very useful and gives an accurate value for locations relatively near a relatively long current carrying wire ($r \ll L$).

$$B = \frac{\mu_0 I}{2\pi r}$$









Magnetic Field – Ring of Current

