
Magnetostatics 
I.  Field Basics – units, poles 

II. Magnetic Force on Charge 
  Mass Spectrometer 
  Cyclotron 

III. Magnetic Force on Current 
  Motors and Meters 

IV. Sources of Magnetic Fields 
  Biot-Savart Law 
  Ampere’s Law 
  Solenoids 
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The student will be able to: HW: 

1 Define and illustrate the basic properties of magnetic fields and 
permanent magnets:  field lines, north and south poles, magnetic 
compasses, Earth’s magnetic field.  

1 – 2 

2 Solve problems relating magnetic force to the motion of a charged 
particle through a magnetic field, such as that found in a mass 
spectrometer. 

3 – 10 

3 Solve problems involving forces on a current carrying wire in a 
magnetic field and torque on a current carrying loop of wire in a 
magnetic field, such as that found in a motor. 

11 – 18 

4 State and apply the Biot-Savart Law and solve such problems that 
relate a magnetic field to the current that produced it. 

19 – 24 

5 State and apply Ampere’s Law and Gauss’s Law for magnetic 
fields and solve related problems such as those involving parallel 
wires, solenoids, and toroids. 

25 – 40 
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The magnetic field around a long straight current consists of 
concentric circles, seen here at an oblique angle.  The direction 
of the field is given by a right hand rule:  thumb in direction of 

current, fingers curl and point in direction of the field. 



I 

B 
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Same field seen “from above” such that the long straight 
current is “out of the page” – directly toward the eye. 
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… field points “into the page” (×) on one side of the 
current and “out of the page” (•) on the other side. 

A view of a plane that contains the long straight current… 



I 

B 

3-D field vectors near a “current segment” 
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Biot-Savart Law 
The magnetic field produced by a current carrying 

wire: 
 
 

!
B= µ0Id

"
ℓ× r̂

4π r2∫

I   = current 
dl  = incremental length of wire 
r   = position relative to wire 
µ0 = permeability of free space 

 (4π × 10−7 N/A2) 
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• B = ? 

I current in a 
rectangular 
wire loop 

Biot-Savart Law Example 
 
 

Find the magnetic field at 
a particular position near a 

current carrying wire… 

The diagrams illustrate vectors 
and quantities of the Biot-
Savart Law for finding the field 
at a point on the z-axis near a 
current loop in the x-y plane… 

x 

y 

z 
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dB 

The current element Idℓ is distance 
r from the point in question.  

Because dℓ and r are in the y-z 
plane, the cross product and 

incremental vector dB  
are in the x-direction. 

ˆ r 

•  

I 

Biot-Savart Law Example 

Idℓ 

r 

x 

y 

z 
!
B= µ0Id

"
ℓ× r̂

4π r2∫

The magnitude of dB 
decreases as y-value 

of Idℓ increases.  
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Biot-Savart Law Example 

dB 

Idℓ 

r 

r 

ˆ 

The current element Idℓ is distance 
r from the point in question.  

Because dℓ and r are in the y-z 
plane, the cross product and 

incremental vector dB  
are in the x-direction. 

x 

y 

z 
!
B= µ0Id

"
ℓ× r̂

4π r2∫

The magnitude of dB 
decreases as y-value 

of Idℓ increases.  
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ˆ r

For current along the  
x-axis the cross product  
of dℓ and r yields  
vector increments dB  
that are in the  
y-direction. 

•  

I 

Biot-Savart Law Example 

dB 

Idℓ 

r 

r 

ˆ 

x 

y 

z 
!
B= µ0Id

"
ℓ× r̂

4π r2∫

r 

Idℓ 

dB 

ˆ Note: the unit vector r always 
points from Idℓ toward the point 
being evaluated for B.  The 
magnitude of r is 1 and it has no 
units (like any other unit vector). 

ˆ 
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dB 

The shaded plane contains dℓ and r.  
By the cross product rule the  
vector element dB must point 

perpendicular to this plane.   
Use the right hand rule! 

•  

I 

Biot-Savart Law Example 

Idℓ 

x 

y 

z 
!
B= µ0Id

"
ℓ× r̂
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r 

ˆ r 
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dB 

Use the right hand rule to analyze the 
remaining side of the current loop. 

•  

I 

Biot-Savart Law Example 

Idℓ 
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z 
!
B= µ0Id

"
ℓ× r̂

4π r2∫

r 

ˆ r 
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Biot-Savart Law Example 

dB 

Idℓ 

r 

r 

ˆ 

To find the net magnetic field at 
the point indicated on the z-axis 
would require integrals for each 
side of the wire loop and then a 

three-dimensional vector sum  
of the four results!  Yikes! 

x 

y 

z 
!
B= µ0Id

"
ℓ× r̂

4π r2∫

ˆ r

•  

Idℓ Idℓ 

ˆ r 

Idℓ 

ˆ r 

Each side of the wire loop 
is a “segment of current”… 
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d
!
ℓ× r̂ = dx( ) 1( )sinθ
d
!
ℓ× r̂ = sinθ dx

d
!
ℓ× r̂ = sinθ dx

d
!
ℓ× r̂ = sinθ ydθ

sin2θ

d
!
ℓ× r̂ = ydθ

sinθ

d
!
ℓ× r̂ = sinθ dx

d
!
ℓ× r̂ = y

x2 + y2
dx

d
!
ℓ× r̂ = ydx

x2 + y2

!
R×
!
S = RS sinθ

• 

x x2 x1 

ˆ r y 

Idℓ 

dB 

r 
θ1 

θ2 θ 

!
B= µ0Id

"
ℓ× r̂

4π r2∫

A key part of Biot-Savart 
is the cross product! 

Field of Current Segment 

Recall how a cross product works: 

So, the cross product has magnitude: 

The magnitude of dℓ is dx  
and the magnitude of r is 1:   

Then, it is necessary to 
choose one variable!   
 
Put sin θ in terms of x 
or put dx in terms of dθ. 

ˆ 
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• 

x x2 x1 

ˆ r y 

Idℓ 

dB 

r 
θ1 

θ2 θ 

r2 = x2 + y2

sinθ = y
r
=

y
x2 + y2

B = µ0I
4π x2 + y2( )

ydx
x2 + y2

∫

B = µ0Iydx

4π x2 + y2( )
3
2

x1

x2∫

B = µ0I
4π y

cosθ1 − cosθ2( )

B = µ0I
4π y

x2
x2
2 + y2

−
x1

x1
2 + y2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

B = µ0I
4π y

−cosθ2 − −cosθ1( )( )

cosθ = − x
r
= −

x
x2 + y2

Field of Current Segment 

d
!
ℓ× r̂ = sinθ dx

d
!
ℓ× r̂ = ydx

x2 + y2

!
B= µ0Id

"
ℓ× r̂

4π r2∫

Integral in terms of x: 
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• 

x x2 x1 

ˆ r y 

Idℓ 

dB 

r 
θ1 

θ2 θ 

sinθ = y
r

B = µ0I

4π y
sinθ
⎛

⎝
⎜

⎞

⎠
⎟
2
ydθ
sinθ∫

B = µ0I sinθdθ
4π yθ1

θ2∫

B = µ0I
4π y

cosθ1 − cosθ2( )
tanθ = − y

x

x = − y
tanθ

r = y
sinθ

d
!
ℓ× r̂ = sinθ dx

d
!
ℓ× r̂ = sinθ ydθ

sin2θ

d
!
ℓ× r̂ = ydθ

sinθ

Field of Current Segment 

dx
dθ

=
y

sin2θ

dx = ydθ
sin2θ

Integral in terms of θ: 

!
B= µ0Id

"
ℓ× r̂

4π r2∫
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• 20.0 

• 5.00 
• 10.5 

• 1.41 • 1.41 

• 5.00 
• 10.5 

• 3.85 

• 0.962 • 0.962 

× 20.0 
× 10.5 × 10.5 

× 5.00 × 5.00 

θ1= 0º, θ2= 0º, B = 0 θ1= 180º, θ2= 180º, B = 0 

θ1= 90º θ2= 90º 

y = 1 m 

y = 3 m 

I = 57.735 A 
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magnetic field B, 
in units of µT 

y = 2 m 

Pick up a calculator, 
try the calculations 

for yourself! 

Field of Current Segment L = 1.732 m, I = 57.735 A 

B = µ0I
4π y

cosθ1 − cosθ2( )
numerical example of 



B = µ0I
4π y

cosθ1 − cosθ2( )

B = µ0I
4πh

1
2
− −

1
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

µ0I
4πh

=
µ0 3I
6πL

ΣB = 6 µ0 3I
6πL

⎛

⎝
⎜

⎞

⎠
⎟=

µ0 3I
πL

ΣB = µ0 3I
πL

, out

B = µ0 3I
6πL

θ1 
θ2 

L 
h 

• B 

L 

L 

• ΣB 

I 

L I 

Consider an equilateral 
triangle, sides length L, 
with current I on one side: 

θ1 = 60º, θ2 = 120º 

Field at the vertex:      , out of page 

Superposition of the above gives 
the magnetic field at the center of 
a hexagonal loop of current: 

© Matthew W. Milligan 



© Matthew W. Milligan 

I 

60º 60º 

L 

2L 

× ΣB 

ΣB = µ0 3I
6πL

, in
⎛

⎝
⎜

⎞

⎠
⎟+

µ0 3I
6π 2L( )

, out
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

µ0 3I
12πL

, in
ΣB = µ0 3I

12πL
, in

B = µ0 3I
6πL

The magnetic field at the vertex  
of the larger equilateral triangle is  

the superposition of the fields from the  
four sides of the trapezoidal current loop. 

3 

4 

1 

2 

Another example using: 
 (derived previous page) 

ΣB = B1 + B2 + B3 + B4 
 
ΣB = B1 + 0 + B3 + 0 

 
 



Bz
B
=

L
2
3L
2

Bz =
1
3
B

Bz =
1
3
µ0 3I
6πL

Bz =
µ0I
6πL

ΣB = 4Bz

ΣB = 4 µ0I
6πL
⎛

⎝
⎜

⎞

⎠
⎟

ΣB = 2µ0I
3πL

B = µ0 3I
6πL

Another example using: 
  (derived previously) 
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I 3 

4 

2 

L 

1 

ΣB 
B1 B2 B3 

B4 

L L 

Bz 
B 

L 
2 

√3L 
   2 

Current square, field B 
at vertex of pyramid? 



B = µ0I
4π y

cosθ1 − cosθ2( )

θ1 → 0º, θ2 → 180º 

r 

B • 

I 

B = µ0I
2πr

θ1 
θ2 

Field of “Infinite” Linear Current 

B = µ0I
4πr

cos0°− cos180°( )

B = µ0I
4πr

1− −1( )( )

B = µ0I
4πr

2( )

Apply the formula for the 
finite current segment to a 
situation where the length 
of wire increases to infinity: 

The resulting formula is very useful and gives 
an accurate value for locations relatively near a 
relatively long current carrying wire (r << L). 
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Magnetic Field – Ring of Current 

Credit: Geek3, Wikipedia 



Magnetic Field – Ring of Current 

Credit: Geek3, Wikipedia 
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Magnetic Field – Ring of Current 

Credit: Geek3, Wikipedia 



Magnetic Field – Ring of Current 

Credit: Geek3, Wikipedia 
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I 
A ring of current 

produces a magnetic 
dipole – acts like a 

bar magnet. 



Magnetic Field – Ring of Current 

I 

x 
B 

The Biot-Savart Law gives the 
magnetic field as a function of x, 
position on the axis of the ring: 

The ring is in the y-z plane 
and centered on the origin. 

Curl fingers of right hand in 
direction of current, field 
points in direction of thumb! 

B = µ0IR
2

2 R2 + x2( )
3
2

B = µ0I
2R

At the exact center of the 
ring x = 0 and the field 
simplifies to: 


