Magnetostatics

I. Field Basics – units, poles

II. Magnetic Force on Charge Mass Spectrometer Cyclotron

III.Magnetic Force on Current Motors and Meters

IV.Sources of Magnetic Fields Biot-Savart Law Ampere's Law Solenoids

	The student will be able to:	HW:
1	Define and illustrate the basic properties of magnetic fields and permanent magnets: field lines, north and south poles, magnetic compasses, Earth's magnetic field.	1 – 2
2	Solve problems relating magnetic force to the motion of a charged particle through a magnetic field, such as that found in a mass spectrometer.	3 – 10
3	Solve problems involving forces on a current carrying wire in a magnetic field and torque on a current carrying loop of wire in a magnetic field, such as that found in a motor.	11 – 18
4	State and apply the Biot-Savart Law and solve such problems that relate a magnetic field to the current that produced it.	19 – 24
5	State and apply Ampere's Law and Gauss's Law for magnetic fields and solve related problems such as those involving parallel wires, solenoids, and toroids.	25-40

Magnetic Force on Charges

A moving charged particle will experience a force in a magnetic field:

$$\vec{\mathbf{F}}_m = q\vec{\mathbf{v}}\times\vec{\mathbf{B}}$$

- $\mathbf{F} =$ force on the particle
- q = charge of the particle
- $\mathbf{v} =$ velocity
- \mathbf{B} = magnetic field

Magnetic Force on Charges

A moving charged particle will experience a force in a magnetic field:

$$\left|\vec{F}_{m}\right| = \left|qvB\sin\theta\right|$$
$$F_{M} = qv_{\wedge}B = qvB_{\wedge}$$

- \mathbf{F} = force on the particle
- q = charge of the particle
- $\mathbf{v} =$ velocity
- \mathbf{B} = magnetic field

A moving charged particle has circular motion at constant speed in a uniform magnetic field! The force is always perpendicular to the velocity.

 \times

$\overset{---}{\times} \overset{\text{Resulting Motion:}}{\times} \overset{\times}{\times} \overset{\times}{\times}$

 $\times \bigstar \times \times \times \times \times \times \times$

 \times

 $\langle \rangle$

 \times

 \times

Because the field is doubled twice as much force acts and causes greater acceleration and thus a smaller circle. Speed is unaffected!

 $\times \times \times \times \times$

 \times \times

B = 50 mT, into the page

 \times \times \times

© Matthew W. Milligan

 \times

 \rangle

 \rangle

 \times

Determine the magnetic force: F = 4.0 nN, up \rightarrow v = 20.0 m/s, right q = -4.0 nCB = 50 mT, out of the page

Resulting Motion:

Now the field has been reversed, which causes the force to be opposite once again.

B = 50 mT, out of the page

[©] Matthew W. Milligan

[©] Matthew W. Milligan

Resulting Motion:

Electrons are responsible for the glowing circle! In what direction must the magnetic field point to cause the electrons to circle clockwise like this?

Tiny electron gun

Image credit: Marcin Bialek, Wikipedia

Electrons are responsible for the glowing circle!

The magnetic field is perpendicular to the circle and away from our view or "into the page".

Image credit: Marcin Bialek, Wikipedia

A particle of mass m and charge q undergoes circular motion at speed v in a uniform magnetic field B. Determine the radius and period of this motion.

Equal charge equal speed:		m, q	$\mathbf{D} \xrightarrow{\mathbf{v}} V$	•			e effec	
• •	•	2m, q	$ \begin{array}{c} \bullet \\ V \end{array} $	•	•	•	mass'	?
• •	•	3m, q	$ \begin{array}{c} \bullet \\ V \end{array} $	•	•	•	•	
• •	•	•	•	•	•	•	•	
• •	•	•	•	•	•	•	•	
• •	•	•	•	•	•	•	•	
• •			●		●	●	●	

© Matthew W. Milligan

Equal mass an equal speed:	nd	m,q	$ \begin{array}{c} \bullet \\ V \end{array} $	•			e effect sing the
• •	• Y	n, 2q	$\mathbf{D} \xrightarrow{\mathbf{P}} \mathcal{V}$	•		•	charge?
• •	• Y	n, 3q	$v \xrightarrow{v} v$	•	•	•	•
• •	•	•	•	•	•	•	•
• •	•	•	•	•	•	•	•
• •	•	•	•	•	•	•	•
					●		•

© Matthew W. Milligan

Tripling the charge decreases both the radius and period by a third.

© Matthew W. Milligan

Equal mass and equal speed:

Mass Spectrometer

- The behavior of a charged particle moving within a magnetic field depends on its mass.
- This characteristic behavior is exploited by a mass spectrometer a device that is used to determine the mass of ionized atoms.
- In this device ions from a certain source pass through a velocity selector and enter a region with a uniform magnetic field.
- The radius of the path within the field depends on the charge and mass of the particle.

Mass Spectrometer

Mass Spectrometer

Ions moving too fast curve upward, particles moving too slow curve downward.

 \times \times \times \times \times Х \times Х Only ions with speed v = E/B \times pass into this region and Х curve an amount related to mass and charge and are "sorted" by the position of impact with detector.

Cyclotron

- A cyclotron is a type of particle accelerator used in particle physics.
- An electric field increases the speed of the particle as it crosses a gap between two "dees".
- A magnetic field permeating both dees causes the particle to do a "U-turn" and then cross the same gap. During the U-turn the electric field is reversed so that the particle's speed again increases.
- This cycle is repeated until the particle gains tremendous speed and exits the device.

Cyclotron

The 37-Inch Cyclotron at the Lawrence Hall of Science museum

Some old dude.

The "dees" were located in this gap between opposite magnetic poles.

> Huge coils of wire that were used to create very strong electromagnets once filled this (now empty) space!

The hollow "dees" were put in a vacuum and powered by an AC source – always oppositely charged and alternating polarity.

OTRONS:

awrence invented the cyclotron, a device for acc