
Magnetostatics
I. Field Basics – units, poles

II. Magnetic Force on Charge

Mass Spectrometer

Cyclotron

III.Magnetic Force on Current

Motors and Meters

IV.Sources of Magnetic Fields

Biot-Savart Law

Ampere’s Law

Solenoids



The student will be able to: HW:

1 Define and illustrate the basic properties of magnetic fields and 

permanent magnets:  field lines, north and south poles, magnetic 

compasses, Earth’s magnetic field. 

1 – 2

2 Solve problems relating magnetic force to the motion of a charged 

particle through a magnetic field, such as that found in a mass 

spectrometer.

3 – 10

3 Solve problems involving forces on a current carrying wire in a 

magnetic field and torque on a current carrying loop of wire in a 

magnetic field, such as that found in a motor.

11 – 18

4 State and apply the Biot-Savart Law and solve such problems that 

relate a magnetic field to the current that produced it.

19 – 24

5 State and apply Ampere’s Law and Gauss’s Law for magnetic 

fields and solve related problems such as those involving parallel 

wires, solenoids, and toroids.

25 – 40
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Magnetic Force on Current Carrying Wire

A current carrying wire is affected by a magnetic 

field as shown in the equation:

F = force on the wire

I = current in the wire

B = magnetic field

dl = infinitesimal length of wire 

in direction of current
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Special Case

A straight current carrying wire affected by a 

uniform magnetic field results in:

BF




 Im

F = force on the wire

I = current in the wire

B = magnetic field

l = length of wire
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Special Case

A straight current carrying wire affected by a 

uniform magnetic field results in:

F = force on the wire

I = current in the wire

B = magnetic field

l = length of wire

FM = IℓBsinq

FM = Iℓ^B = IℓB^
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I = 3 A

B = 0.1 T

F = 0.6 N, up

1 m

Determine the magnetic force:

For a straight wire with current perpendicular to the 

magnetic field, the force is simply the product F = IlB, 

in this case F = (3 A)(2 m)(0.1 N/mA).

And if the wire is longer…

direction given by 

the right hand rule!
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I = 3 A

B = 0.1 T

Determine the magnetic force:

F = 0.9 N, up

1 m

…the force is proportionally greater.

And if the field is stronger…
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I = 2 A

B = 0.2 T

Determine the magnetic force:

F = 0.6 N, right

1 m

…the force is proportionally greater.

And if field and/or current is reversed and wire is bent…
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I = 10 A

B = 0.2 T

Determine the magnetic force:

F = 4 N, right

1 m

F = 6 N, down

…find the force on each piece of the wire.
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I = 10 A

B = 0.2 T

Determine the magnetic force:

Fnet = 7.2 N, 304º

1 m

© Matthew W. Milligan



I = 4 A

B = 0.1 T

Determine the magnetic force:

F = 1.2 N, out

1 m
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71.6°

I = 4 A

B = 0.1 T

Determine the magnetic force:

F = 1.2 N, out

1 m

If current is not perpendicular use:  F = IlB sinθ, 

in this case F = (4 A)(3.16 m)(0.1 N/mA)(sin 71.6º).

Or multiply perpendicular components:  F = IlxB, 

in this case F = (4 A)(3 m)(0.1 N/mA) – same result!
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I = 4 A

B = 0.1 T

Determine the magnetic force:

F = 1.2 N, out

1 m

A longer wire than the previous example, 

but the perpendicular component of length 

is the same and therefore the cross product 

is the same and the result is the same 

magnetic force.
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I = 4 A

B = 0.1 T

Determine the magnetic force:

F4 = 1.2 N, out

1 m

F2 = 1.2 N, in

Fnet = F1 + F2 + F3 + F4 = 0F3 = 0 F1 = 0

Net force on the loop of current is zero, but what about torque?
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I = 4 A

B = 0.1 T

Determine the magnetic torque:

F4 = 1.2 N, out

1 m

F2 = 1.2 N, in

The combined effect of all of the forces on all sides of 

the loop is to cause a torque which would tend to make 

the loop of current rotate in the direction shown!

τnet = rF2 + rF4 = 2(0.5 m)(1.2 N)

τnet = 1.2 Nm
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I = 4 A

B = 0.1 T

Determine the magnetic force and torque:

F = 0.8 N, out

1 m

F = 0.8 N, in

Fnet =0
τnet = 0.6 Nm
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I

The magnetic torque on a current carrying loop of wire 

is the basic principle of the electric motor.  Flip 

through the following pages to get a 3-D perspective 

of the changing torque as the loop rotates in a uniform 

magnetic field…
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B

The magnetic torque decreases as the coil rotates 

because the lever arm or moment arm is decreasing…
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B

The torque is zero at this point because the forces 

point directly away from the axis of rotation.
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B

If the loop continues to rotate the torque will reverse 

directions and oppose further rotation…
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B

…because of this either the current or the magnetic 

field must be reversed in the operation of an electric 

motor so that the torque is always in one direction.
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B

The amount of torque is maximized with this orientation 

– the forces are farthest from the axis of rotation.  

Greatest torque occurs when the field points across the 

area bound by the loop of current carrying wire.
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B

μ

θ

τ

It can be shown that the torque is given by:

τ = μ× B = (NIA)B sinθ

where μ is called the “magnetic dipole moment” and 

equals the product of number of turns N, current I, 

and the area A bound by the current.
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A right hand rule:  curl fingers 

in direction of current I and 

thumb points in direction of μ.
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A loop of current can be thought of as a 

magnetic dipole – behaving essentially as a 

bar magnet with poles oriented as shown here.
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In the orientation shown here, θ = 90º, 

the amount of torque is maximized:

τ = μ× B = (NIA)B sinθ

τmax = μB = NIAB
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θ = 75º

torque: 0.97 μB, clockwise
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θ = 60º

torque: 0.87 μB, clockwise
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θ = 45º

torque: 0.71 μB, clockwise



B

μ

τ

© Matthew W. Milligan

θ = 30º

torque: 0.50 μB, clockwise
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θ = 15º

torque: 0.26 μB, clockwise
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Torque is zero when the magnetic dipole of the 

current loop is aligned with the magnetic field –

an angular position of equilibrium.

θ = 0º

torque: zero
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θ = 15º

torque: 0.26 μB, counterclockwise



Bμτ
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θ = 30º

torque: 0.50 μB, counterclockwise
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θ = 45º

torque: 0.71 μB, counterclockwise
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θ = 60º

torque: 0.87 μB, counterclockwise
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θ = 75º

torque: 0.97 μB, counterclockwise



N

B

μ

τ

S

© Matthew W. Milligan

θ = 90º

torque: 1.00 μB, counterclockwise


