Electric Potential Energy

Work and Energy for Charges

Electric Flux and Potential

I. Electric Flux

- flux defined
- Gauss' s Law
II. Electric Potential
- work and energy of charge
- potential defined
- potential of discrete charge(s)
- potential of charge distributions
- field related to potential
III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	$1-5$
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	$6-17$
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	$18-25$
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	$26-32$
5	Use the electric field to determine potential or potential difference and solve related problems.	$33-36$
6	Use potential to determine electric field and solve related problems.	$37-39$
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	$40-46$

Work and Energy for Charges

Work must be done by an external force F_{A} in order to separate opposite charges attracted to one another by force F_{E}.

Work and Energy for Charges

Opposite charges that have been separated represent potential energy because of the attractive force F_{E} between such charges. (There is the potential for work to be done by the electric force F_{E} as the separation decreases and charges come together.)

Work and Energy for Charges

Likewise work must be done by an external force F_{A} in order to decrease the separation of like charges that repel one another F_{E}.

Work and Energy for Charges

Like charges that have been pushed together represent potential energy because of the repulsive force F_{E}. (There is the potential for work to be done by the electric force F_{E} as the separation increases and charges move apart.)

Electric Potential Energy

where: $U=$ electric potential energy $q=$ point charge (may be + or -) $r=$ separation of the two charges

Note: The calculated result is relative to a separation of infinity!

Electric Flux and Potential

I. Electric Flux

- flux defined
- Gauss' s Law
II. Electric Potential
- work and energy of charge
- potential defined
- potential of discrete charge(s)
- potential of charge distributions
- field related to potential
III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	$1-5$
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	$6-17$
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	$18-25$
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	$26-32$
5	Use the electric field to determine potential or potential difference and solve related problems.	$33-36$
6	Use potential to determine electric field and solve related problems.	$37-39$
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	$40-46$

Electric Potential

where: $\quad U=$ potential energy of q relative to infinity
$W=$ work done by electrostatic force on charge q from infinity to a particular position

Units of Electric Potential

- The SI unit for electric potential is the volt.
- One volt is equal to one joule of work or energy per every one coulomb of charge:

$$
1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}
$$

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

$$
\begin{aligned}
& q=1 \mathrm{nC} \\
& \emptyset \\
& \\
& U=5 \mathrm{~nJ}
\end{aligned}
$$

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

The potential energy of a point charge located on an equipotential can be found by $U=q V$.

Potential Near a Point Charge

where: $\quad V=$ electric potential at position \mathbf{r} (position relative to q)
$q=$ point charge (may be + or -)

Potential Near Multiple Point Charges

note: The values of r extend from each q to the particular point at which V is found.

$$
\begin{gathered}
V=V_{1}+V_{2}+V_{3} \\
V=k(-1 \mathrm{nC}) / 1.12+k(2 \mathrm{nC}) / 0.707+k(-3 \mathrm{nC}) / 1
\end{gathered}
$$

$$
V=(-8)+25+(-27)
$$

$$
V=-10 \mathrm{~V}
$$

Potential Near a Continuous Charge Distribution

$$
V=\int \frac{k d q}{r}
$$

$$
V=\int \frac{d q}{4 \pi \varepsilon_{0} r}
$$

Typically $d q$ is rewritten in terms of: charge per length (λ),
charge per area (σ), or charge per volume (ρ).

