Electric Potential Energy

Work and Energy for Charges

Electric Flux and Potential

- I. Electric Flux
 - flux defined
 - Gauss' s Law
- **II. Electric Potential**
 - work and energy of charge
 - potential defined
 - potential of discrete charge(s)
 - potential of charge distributions
 - field related to potential
- III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	1-5
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	6 – 17
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	18 – 25
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	26 - 32
5	Use the electric field to determine potential or potential difference and solve related problems.	33 - 36
6	Use potential to determine electric field and solve related problems.	37 – 39
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	40-46

Work and Energy for Charges Work must be done by an external force F_A in order to separate opposite charges attracted to one another by force F_E .

Work and Energy for Charges

$$\begin{array}{c} \bullet \\ F_{\rm E} \end{array} \qquad \begin{array}{c} \bullet \\ F_{\rm E} \end{array} \qquad \begin{array}{c} \bullet \\ F_{\rm E} \end{array}$$

Opposite charges that have been separated represent **potential energy** because of the attractive force F_E between such charges. (There is the potential for work to be done by the electric force F_E as the separation decreases and charges come together.) © Matthew W. Milligan Work and Energy for Charges Likewise work must be done by an external force F_A in order to *decrease* the separation of *like* charges that repel one another F_E .

Work and Energy for Charges

Like charges that have been pushed together represent potential energy because of the *repulsive* force $F_{\rm E}$. (There is the potential for work to be done by the electric force $F_{\rm E}$ as the separation *increases* and charges move apart.)

Electric Potential Energy

where: U = electric potential energy q = point charge (may be + or -) r = separation of the two charges

Note: The calculated result is relative to a separation of infinity!

Electric Flux and Potential

- I. Electric Flux
 - flux definedGauss' s Law
 - I Electric Detentio
- II. Electric Potential
 - work and energy of charge
 - potential defined
 - potential of discrete charge(s)
 - potential of charge distributions
 - field related to potential
- III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	1-5
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	6 – 17
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	18 – 25
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	26-32
5	Use the electric field to determine potential or potential difference and solve related problems.	33 - 36
6	Use potential to determine electric field and solve related problems.	37 – 39
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	40-46

Electric Potential

where: U = potential energy of qrelative to infinity W = work done by electrostatic force on charge q from infinity to a particular position

Units of Electric Potential

- The SI unit for electric potential is the **volt**.
- One volt is equal to one joule of work or energy per every one coulomb of charge:

1 V = 1 J/C

This is called an "equipotential line" or "equipotential surface" – in this case there is equal potential on a spherical surface. 15 V 10 V5 V

0 O G#0..

Potential Near a Point Charge

where: V = electric potential at position **r** (position *relative* to q) q = point charge (may be + or -)

Potential Near Multiple Point Charges

note: The values of r extend from each q to the particular point at which V is found.

Potential Near a Continuous Charge Distribution

Typically dq is rewritten in terms of: charge per length (λ), charge per area (σ), or charge per volume (ρ).