Electric Flux

Electric Flux and Potential

- I. Electric Flux - flux defined
 - Gauss' s Law
- II. Electric Potential
 - work and energy of charge
 - potential defined
 - potential of discrete charge(s)
 - potential of charge distributions
 - field related to potential
- III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	1-5
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	6 – 17
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	18-25
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	26-32
5	Use the electric field to determine potential or potential difference and solve related problems.	33 – 36
6	Use potential to determine electric field and solve related problems.	37 – 39
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	40-46

Flux

- The word **flux** basically means *flow*.
- Before studying electric flux (an abstraction) let us consider two examples of flux that are more concrete: light and rain.

- Intensity of the rain (inches per second)
- Size of the hole more specifically the **area** (square inches)
- Amount of time exposed to rain (seconds)
- Tilt of the hole

Sunlight falls upon Earth ...

...but only 1380 joules of energy per second (at most) falls upon a single square meter. (This is called the **solar constant** or irradiance.)

© Matthew W. Milligan

7.380

Therefore the intensity of sunlight can be represented by a value of 1380 W/m². Does energy absorbed by the surface of the Earth depend on latitude?

Although the intensity of the light is the same, a square meter of ground absorbs less energy at a higher latitude. *i.e.* The luminous *flux* is less!

Flux

- In both the rain and light examples flux is dependent on the intensity more intense rain or light increases the flux.
- In both cases the flux is dependent on area greater area increases the flux.
- In both cases the flux is dependent on the orientation of the relevant area being perpendicular to the flow maximizes flux.

Electric Flux

- Electric flux is not a literal flow but rather a measure of the electric field "intercepting" a certain surface.
- The greater the intensity of the electric field, the greater the area of the surface, and the "more correctly aligned" (*i.e.* surface perpendicular to flow), the greater the electric flux.

Electric Flux

$$\Phi_E = \int \vec{E} \cdot d\vec{A}$$

where:
$$\Phi_E$$
 = electric flux
 E = electric field
 A = area vector (normal to surface)

Electric Flux

- Electric flux is a scalar quantity that may be positive or negative depending on the direction of the flow.
- The electric flux for a given surface is directly proportional to the number of electric field lines crossing through the surface.
- For a surface that encloses a volume a closed surface the area vector *dA* points outward (away from the inside) by convention.

Imagine sunlight shining down on a rectangle that rotates ...

...the flux is proportional to the size of the shadow.

Imagine sunlight shining down on a rectangle that rotates ...

Imagine sunlight shining down on a rectangle that rotates ...

...the flux is proportional to the size of the shadow.

Imagine sunlight shining down on a rectangle that rotates ...

> ...the flux is proportional to the size of the shadow.

$$\Phi_E = EA$$

$$\Phi_{E} = \vec{E} \cdot \vec{A}$$

$$\Phi_{E} = EA\cos\theta$$

$$\vec{E}$$

$$\theta \mid \vec{A}$$

$$\Phi_{E} = \vec{E} \cdot \vec{A}$$

$$\Phi_{E} = EA\cos\theta$$

$$\vec{A}$$

