Electric Flux and Potential

- I. Electric Flux
 flux defined
 Gauss' s Law
- II. Electric Potential
 - work and energy of charge
 - potential defined
 - potential of discrete charge(s)
 - potential of charge distributions
 - field related to potential
- III. Conductors

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	1-5
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	6 – 17
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	18-25
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	26-32
5	Use the electric field to determine potential or potential difference and solve related problems.	33 – 36
6	Use potential to determine electric field and solve related problems.	37 – 39
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	40-46

 $\mathbf{I}_{end}^{R} = \overset{R}{\overset{}_{0}} \frac{hq \times 2\rho x}{2 \times 4\rho e_{0} \left(\frac{h^{2}}{4} + x^{2}\right)^{\frac{3}{2}}} \times dx$ dA ${\mathcal X}$ qh ϕ_{end} $2\varepsilon_0$ $2\varepsilon_0\sqrt{4R^2+h^2}$ $f_{side} = \overset{h}{\overset{2}{0}} \frac{Rq \times 2\rho R}{4\rho e_0 \left(R^2 + y^2\right)^{\frac{3}{2}}} \times dy$ r h V \boldsymbol{E} qh ϕ_{side} $\overline{\varepsilon_0}\sqrt{4R^2+h^2}$ R © Matthew W. Milligan

Gauss determined that a similar process integrating flux completely around a closed surface containing amount of charge *q* will *always simplify* to $\Phi = q/\varepsilon_0$, regardless of the shape of the surface or the configuration or amount of charge!

Gauss' s Law

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\rm enc}}{\varepsilon_0}$$

- where: q_{enc} = total charge enclosed by surface E = electric field A = area vector (normal to surface)
- note: The circle on the integral sign indicates integration entirely around a *closed surface dA* is an incremental piece of this surface.
 © Matthew W. Milligan

Maxwell's Equations

Using Gauss' s Law to Solve for E

- In certain situations Gauss' s law is handy for determining the electric field of a charge distribution.
- This only works in <u>highly symmetrical</u> <u>situations</u>!
- It is necessary to simplify the integral to the form: $\mathbf{E} \cdot \mathbf{A}$.
- In order to do this, one must imagine a "Gaussian surface" along which the *field is uniform* and the dot product may be found.