Gauss's Law vs. Coulomb's Law

An Appreciation

Find the electric field E at distance r from the center...

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

It is easy to derive these results using

Spherical surface of radius R and uniform charge Q.

Gauss's Law: The field anywhere inside is zero and anywhere outside is equivalent to that of a point charge.

BUT, what if you did not use Gauss's Law?! ...

Spherical surface of radius R and uniform charge Q.

Charge per area: $\quad \sigma=\frac{Q}{4 \pi R^{2}}$

$$
\overbrace{\underset{F}{d q}}^{\substack{d}} \rightarrow \underset{d E}{\longrightarrow}=\frac{x d q}{4 \pi \varepsilon_{0}\left(z^{2}+x^{2}\right)^{\frac{3}{2}}}
$$

Field contribution, $d E$, of each ring (previously derived using Coulomb's Law and inverse square property of point charges)

Area of each ring is given by: $d A=2 \pi z R d \theta$

$$
d E=\frac{x \sigma 2 \pi z R d \theta}{4 \pi \varepsilon_{0}\left(z^{2}+x^{2}\right)^{\frac{3}{2}}}
$$ $d q=\sigma 2 \pi z R d \theta$

This should do it! All that remains is to evaluate...

$$
\begin{aligned}
& E=\int_{0}^{\pi} \frac{\sigma R^{2}(r-R \cos \theta) \sin \theta d \theta}{2 \varepsilon_{0}\left(R^{2} \sin ^{2} \theta+(r-R \cos \theta)^{2}\right)^{\frac{3}{2}}} \\
& E=\int_{0}^{\pi} \frac{\sigma R^{2}(r-R \cos \theta) \sin \theta d \theta}{2 \varepsilon_{0}\left(R^{2} \sin ^{2} \theta+r^{2}-2 R r \cos \theta+R^{2} \cos ^{2} \theta\right)^{\frac{3}{2}}} \\
& E=\int_{0}^{\pi} \frac{\sigma R^{2}(r-R \cos \theta) \sin \theta d \theta}{2 \varepsilon_{0}\left(R^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+r^{2}-2 R r \cos \theta\right)^{\frac{3}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& E=\int_{0}^{\pi} \frac{\sigma R^{2}(r-R \cos \theta) \sin \theta d \theta}{2 \varepsilon_{0}\left(R^{2}+r^{2}-2 R r \cos \theta\right)^{\frac{3}{2}} \quad u=R^{2}+r^{2}-2 R r \cos \theta} \quad \cos \theta=\frac{R^{2}+r^{2}-u}{2 R r} \\
& E=\frac{\sigma R^{2}}{2 \varepsilon_{0}} \int_{0}^{\pi} \frac{u^{-\frac{3}{2}}}{2 R}-\frac{\left(R^{2}+r^{2}\right) u^{-\frac{3}{2}}}{4 R r^{2}}+\frac{u^{-\frac{1}{2}}}{4 R r^{2}} d u \quad \frac{d u}{d \theta}=2 R r \sin \theta \\
& E=\frac{\sigma R^{2}}{2 \varepsilon_{0}} \int_{0}^{\theta=\pi} \frac{u^{-\frac{3}{2}}}{2 R}-\frac{\left(R^{2}+r^{2}\right) u^{-\frac{3}{2}}}{4 R r^{2}}+\frac{u^{-\frac{1}{2}}}{4 R r^{2}} d u \quad \frac{d u}{2 R r}=\sin \theta d \theta \\
& E=\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(-\frac{1}{R \sqrt{u}}+\frac{R^{2}+r^{2}}{2 R r^{2} \sqrt{u}}+\frac{\sqrt{u}}{2 R r^{2}}\right)_{\theta=0}^{\theta=\pi}
\end{aligned}
$$

$$
\begin{aligned}
E & =\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(-\frac{1}{R \sqrt{u}}+\frac{R^{2}+r^{2}}{2 R r^{2} \sqrt{u}}+\frac{\sqrt{u}}{2 R r^{2}}\right)_{\theta=0}^{\theta=\pi} \\
E & =\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{-2 r^{2}+R^{2}+r^{2}+u}{2 R r^{2} \sqrt{u}}\right)_{\theta=0}^{\theta=\pi} u=R^{2}+r^{2}-2 R r \cos \theta \\
E & =\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{-2 r^{2}+R^{2}+r^{2}+R^{2}+r^{2}-2 R r \cos \theta}{2 R r^{2} \sqrt{u}}\right)_{\theta=0}^{\theta=\pi} \\
E & =\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{2 R^{2}-2 R r \cos \theta}{2 R r^{2} \sqrt{u}}\right)_{\theta=0}^{\theta=\pi}
\end{aligned}
$$

$$
\begin{aligned}
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{2 R^{2}-2 R r \cos \theta}{2 R r^{2} \sqrt{u}}\right)_{\theta=0}^{\theta=\pi} \\
& E=\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R-r \cos \theta}{r^{2} \sqrt{u}}\right)_{\theta=0}^{\theta=\pi} \\
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R-r \cos \theta}{r^{2} \sqrt{R^{2}+r^{2}-2 R r \cos \theta}}\right)_{\theta=0}^{\theta=\pi} \\
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R-r(-1)}{r^{2} \sqrt{R^{2}+r^{2}-2 R r(-1)}}-\frac{R-r(1)}{r^{2} \sqrt{R^{2}+r^{2}-2 R r(1)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R+r}{r^{2} \sqrt{r^{2}+2 R r+R^{2}}}-\frac{R-r}{r^{2} \sqrt{r^{2}-2 R r+R^{2}}}\right) \\
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R+r}{r^{2} \sqrt{(r+R)^{2}}}+\frac{r-R}{r^{2} \sqrt{(r-R)^{2}}}\right) \\
E= & \frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{1}{r^{2}}+\frac{1}{r^{2}}\right) \quad \text { If } r>R \\
& E=\frac{2 \sigma R^{2}}{2 \varepsilon_{0} r^{2}} \quad E=\frac{\frac{Q}{4 \pi R^{2}} R^{2}}{\varepsilon_{0} r^{2}} \quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
\end{aligned}
$$

$$
E=\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R+r}{r^{2} \sqrt{r^{2}+2 R r+R^{2}}}-\frac{R-r}{r^{2} \sqrt{r^{2}-2 R r+R^{2}}}\right)
$$

$$
E=\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{R+r}{r^{2} \sqrt{(r+R)^{2}}}+\frac{r-R}{r^{2} \sqrt{(r-R)^{2}}}\right)
$$

$$
E=\frac{\sigma R^{2}}{2 \varepsilon_{0}}\left(\frac{1}{r^{2}}+\frac{-1}{r^{2}}\right)
$$

If $r<R$

$$
E=0
$$

Find the electric field E at distance r from the center...

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

The exact same result for both

Spherical surface of radius R and uniform charge Q. outside and inside can be derived based on Coulomb's Law - but just think how much easier it is using Gauss's Law! Thank you Mr. Gauss, I appreciate you!!!!

