Electric Potential of a Charged Shell

The Hard Way

Spherical surface of radius R and uniform charge Q.

Charge per area: $\quad \sigma=\frac{Q}{4 \pi R^{2}}$

Slice sphere into rings of radius z and charge $d q$, all points on which are at distance x from the point in question...

Potential contribution, $d V$, of each ring (previously discussed)

$$
\begin{aligned}
& d V=\frac{d q}{4 \pi \varepsilon_{0} x} \\
& d V=\frac{Q \sin \theta d \theta}{8 \pi \varepsilon_{0} x}
\end{aligned}
$$

Area of each ring is given by: $d A=2 \pi z R d \theta$ or $d A=2 \pi(R \sin \theta) R d \theta$ and therefore $d q$ is:
$d q=\sigma 2 \pi R^{2} \sin \theta d \theta=1 / 2 Q \sin \theta d \theta$

$$
\begin{array}{r}
\text { R } \\
d V=\frac{d q}{4 \pi \varepsilon_{0} x} \\
d V=\frac{Q \sin \theta d \theta}{8 \pi \varepsilon_{0} x} \\
d V=\frac{Q \sin \theta d \theta}{R^{2}+r^{2}-2 R r \cos \theta} \\
8 \pi \varepsilon_{0} \sqrt{R^{2}+r^{2}-2 R r \cos \theta}
\end{array}
$$

$$
\begin{array}{r}
V=\int_{0}^{\pi} \frac{Q \sin \theta d \theta}{} \frac{u=R^{2}+r^{2}-2 R r \cos \theta}{8 \pi \varepsilon_{0}\left(R^{2}+r^{2}-2 R r \cos \theta\right)^{\frac{1}{2}}} \quad \frac{d u}{d \theta}=2 R r \sin \theta \\
V=\frac{Q}{16 \pi \varepsilon_{0} R r} \int_{R^{2}+r^{2}-2 R r}^{R^{2}+r^{2}+2 R r} u^{-\frac{1}{2}} d u
\end{array} \frac{\frac{d u}{2 R r}=\sin \theta d \theta}{}
$$

$$
V=\frac{Q}{16 \pi \varepsilon_{0} R r}(2 \sqrt{u})_{u=R^{2}+r^{2}-2 R r}^{u=R^{2}+r^{2}+2 R r}
$$

$$
V=\frac{Q}{8 \pi \varepsilon_{0} R r}\left(\sqrt{R^{2}+2 R r+r^{2}}-\sqrt{R^{2}-2 R r+r^{2}}\right)
$$

$$
\begin{aligned}
& V=\frac{Q}{8 \pi \varepsilon_{0} R r}\left(\sqrt{R^{2}+2 R r+r^{2}}-\sqrt{R^{2}-2 R r+r^{2}}\right) \\
& V=\frac{Q}{8 \pi \varepsilon_{0} R r}(r+R-(r-R)) \quad V=\frac{Q}{8 \pi \varepsilon_{0} R r}(r+R-(R-r)) \\
& V=\frac{Q}{8 \pi \varepsilon_{0} R r}(2 R) \\
& V=\frac{Q}{4 \pi \varepsilon_{0} r} r>R \\
& \text { But, what is the easy way?! } \quad V=\frac{Q}{8 \pi \varepsilon_{0} R r}(2 r) \\
& 4 \pi \varepsilon_{0} R \\
&
\end{aligned} r R
$$

$$
\begin{aligned}
& E=0 \\
& \text { distance } r \text { from the center... } \\
& E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\
& V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{r}
\end{aligned}
$$

Find the electric potential V at

The "easy way" is to use the fundamental connection between field and potential. The field outside the sphere is the same as a point charge, therefore so is the potential: $V=k q / r, r \geq R$. The field inside the sphere is zero, therefore there is no difference in potential from that at the surface: $V=k q / R, r \leq R$.

