Electric Field vs. Potential

Interconnections

Electric Flux and Potential

I. Electric Flux

- flux defined
- Gauss' s Law
II. Electric Potential
- work and energy of charge
- potential defined
- potential of discrete charge(s)
- potential of charge distributions
- field related to potential
III. Conductors
© Matthew W. Milligan

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	$1-5$
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	$6-17$
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	$18-25$
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	$26-32$
5	Use the electric field to determine potential or potential difference and solve related problems.	$33-36$
6	Use potential to determine electric field and solve related problems.	$37-39$
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	$40-46$

Potential Difference

As with all forms of potential energy we are often interested in the difference between two positions:

$$
V_{B}-V_{A}=-\int_{A}^{B} \stackrel{\rightharpoonup}{E} \cdot d \stackrel{\rightharpoonup}{r}
$$

where: $\quad V=$ electric potential associated with E, a particular electric field A and $B=$ arbitrary positions within the electric field

Potential Differential

The converse of the previous equation allows one to find the electric field given electric potential

$$
E_{r}=-\frac{d V}{d r}
$$

where: $\quad E_{r}=$ component of electric field in the direction of r
$V=$ potential as a function of position r
ring (along axis)

© Matthew W. Milligan
ring (along axis)
Now, integrating E yields $V-\operatorname{try}$ it!

$$
4 \pi \varepsilon_{o}\left(x^{2}+R^{2}\right)^{\frac{3}{2}}
$$

$V=\frac{Q}{4 \pi \varepsilon_{o} \sqrt{x^{2}+R^{2}}}$

$$
V_{B}-V_{A}=-\int_{A}^{B} E d x
$$

ring (along axis)
Now, differentiating V yields $E-\operatorname{try}$ it!

$$
E_{x}=-\frac{d V}{d x}
$$

$$
V=\frac{Q}{4 \pi \varepsilon_{o} \sqrt{x^{2}+R^{2}}}
$$

© Matthew W. Milligan

disk (along axis)

These functions were previously derived from:

$$
V=\frac{Q}{2 \pi \varepsilon_{o} R^{2}}\left(\sqrt{x^{2}+R^{2}}-x\right)
$$

$$
\begin{aligned}
\vec{E} & =\int \frac{d q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
V & =\int \frac{d q}{4 \pi \varepsilon_{0} r}
\end{aligned}
$$

$$
E=\frac{Q x}{2 \pi \varepsilon_{\theta} R^{2}}\left(\frac{1}{x}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right)
$$

disk (along axis)
Now, differentiating V yields $E-\operatorname{try}$ it!

$$
V=\frac{Q}{2 \pi \varepsilon_{o} R^{2}}\left(\sqrt{x^{2}+R^{2}}-x\right)
$$

$$
E_{x}=-\frac{d V}{d x}
$$

$$
E=\frac{Q x}{2 \pi \varepsilon_{0} R^{2}}\left(\frac{1}{x}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right)
$$

disk (along axis)
Now, integrating E yields V - try it!

$$
V=\frac{Q}{2 \pi \varepsilon_{o} R^{2}}\left(\sqrt{x^{2}+R^{2}}-x\right)
$$

$$
V_{B}-V_{A}=-\int_{A}^{B} E d x
$$

$$
E=\frac{Q x}{2 \pi \varepsilon_{0} R^{2}}\left(\frac{1}{x}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right)
$$

© Matthew W. Milligan

