Electric Field vs. Potential

Interconnections

© Matthew W. Milligan

Electric Flux and Potential

- I. Electric Flux
 - flux definedGauss' s Law
- II. Electric Potential
 - work and energy of charge
 - potential defined
 - potential of discrete charge(s)
 - potential of charge distributions
 - field related to potential

III. Conductors

© Matthew W. Milligan

	The student will be able to:	HW:
1	Define and apply the concept of electric flux and solve related problems.	1 – 5
2	State and apply Gauss' s Law and solve related problems using Gaussian surfaces.	6 – 17
3	Calculate work and potential energy for discrete charges and solve related problems including work to assemble or disassemble.	18 – 25
4	Define and apply the concept of electric potential and solve related problems for a discrete set of point charges and/or a continuous charge distribution.	26 - 32
5	Use the electric field to determine potential or potential difference and solve related problems.	33 – 36
6	Use potential to determine electric field and solve related problems.	37 – 39
7	State the properties of conductors in electrostatic equilibrium and solve related problems.	40-46

Potential Difference

As with all forms of potential energy we are often interested in the *difference* between two positions:

$$V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{r}$$

where: V = electric potential associated with *E*, a particular electric field *A* and *B* = arbitrary positions within the electric field © Matthew W. Milligan

Potential Differential

The converse of the previous equation allows one to find the electric field given electric potential

where: E_r = component of electric field in the direction of rV = potential as a function of position r© Matthew W. Milligan

