Advanced Kinematics

- I. Vector addition/subtraction
- II. Components
- **III. Relative Velocity**
- IV. Projectile Motion
- V. Use of Calculus (nonuniform acceleration)
- VI. Parametric Equations

	The student will be able to:	HW:
1	Calculate the components of a vector given its magnitude and direction.	1 – 2
2	Calculate the magnitude and direction of a vector given its components.	3 – 4
3	Use vector components as a means of analyzing/solving 2-D motion volume problems.	5-6
4	Add or subtract vectors analytically (using trigonometric calculations).	7 – 9
5	Use vector addition or subtraction as a means of solving relative motion problems.	10 - 15
6	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems.	16 – 24
7	Use derivatives to determine speed, velocity, or acceleration and solve for extrema and/or zeros.	25 – 27
8	Use integrals to determine distance, displacement, change in speed or velocity and solve for functions thereof given initial conditions.	28-31
9	Solve problems involving parametric equations that describe motion components	32 - 34

Frame of Reference

- Any quantity of motion must be measured *relative* to a certain frame of reference.
- A *frame of reference* is something with which a moving object is compared.
- The values of position, velocity, acceleration, etc. depend upon the chosen frame of reference.

(The values could be *anything*, depending on *which* frame of reference is used!)

Relative Velocity Equation

The value of object *A*' s velocity in reference frame *C* differs from that in reference frame *B* by the velocity of *B* relative to *C*:

$$\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$$

Relative Kinematics Equations

The same type of relationship exists for position and acceleration:

$$\vec{r}_{AC} = \vec{r}_{AB} + \vec{r}_{BC}$$
$$\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$$
$$\vec{a}_{AC} = \vec{a}_{AB} + \vec{a}_{BC}$$

Consider a person walking on a moving sidewalk (often found in an airport). The net velocity is the vector sum of the person's "walking velocity walking" plus the velocity of the sidewalk.

 $\vec{v}_{PE} = \vec{v}_{PS} + \vec{v}_{SE}$ person person sidewalk
relative relative to relative
• Matthew W. Milligan to earth sidewalk to earth

Advanced Kinematics

- I. Vector addition/subtraction
- II. Components
- III. Relative Velocity
- **IV. Projectile Motion**
- V. Use of Calculus (nonuniform acceleration)
- VI. Parametric Equations

	The student will be able to:	HW:
1	Calculate the components of a vector given its magnitude and direction.	1 – 2
2	Calculate the magnitude and direction of a vector given its components.	3 – 4
3	Use vector components as a means of analyzing/solving 2-D motion volume problems.	5 – 6
4	Add or subtract vectors analytically (using trigonometric calculations).	7-9
5	Use vector addition or subtraction as a means of solving relative motion problems.	10 – 15
6	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems.	16 – 24
7	Use derivatives to determine speed, velocity, or acceleration and solve for extrema and/or zeros.	25 – 27
8	Use integrals to determine distance, displacement, change in speed or velocity and solve for functions thereof given initial conditions.	28-31
9	Solve problems involving parametric equations that describe motion components	32 - 34

[©] Matthew W. Milligan

What is a "projectile"?

- A projectile is an object launched by some initial force, which then proceeds under the sole influence of gravity.
- The equations used to model this motion apply to the subsequent motion of the object *after* launch and *before* impact.

Projectile *x* and *y*

• Horizontally a projectile moves forward at a constant rate. The *x*-component of a projectile's velocity is constant.

Diameter of ball: 6.7 cm Strobe: 1800 flashes/minute

The ball has fallen 8 diameters after 10 flashes of the strobe light.

3

4

5

6

8

234

6

© Matthew W. Milligan

What is its vertical acceleration?

Projectile *x* and *y*

- Horizontally a projectile moves forward at a constant rate. The *x*-component of a projectile's velocity is constant.
- Vertically a projectile moves with constant acceleration caused by gravity. The *y*-component of a projectile's acceleration is -g.
- The forward motion of a projectile does not alter the effect of gravity – nor does the force of gravity alter the forward motion of a projectile.

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{d} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$$

$$a_x = ?$$

$$a_y = ?$$

$$v_x = v_{0x} + a_x t$$

$$v_y = v_{0y} + a_y t$$

$$d_x = v_{0x} t + \frac{1}{2}a_x t^2$$

$$d_y = v_{0y} t + \frac{1}{2}a_y t^2$$

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{d} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$$

$$a_x = 0 \qquad a_y = -g$$

$$v_x = v_{0x} + a_x t \qquad v_y = v_{0y} + a_y t$$

$$d_x = v_{0x} t + \frac{1}{2}a_x t^2 \qquad d_y = v_{0y} t + \frac{1}{2}a_y t^2$$

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{d} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$$

$$a_x = 0 \qquad a_y = -g$$

$$v_x = v_{0x} \qquad v_y = v_{0y} + a_y t$$

$$\Delta x = v_{0x} t \qquad \Delta y = v_{0y} t + \frac{1}{2}a_y t^2$$

Components of Projectile Motion

Components of Projectile Motion

Although seldom done it is also valid to *not* use components and instead use vector diagrams such as those shown here to analyze projectile motion.

© Matthew W. Milligan

 $\vec{d} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$

 $\vec{v} = \vec{v}_0 + \vec{a}t$

 $\frac{1}{2}at^{2}$