Rotation

I. Kinematics

- Angular analogs

II. Dynamics

- Torque and Moment of Inertia
- Fixed-axis
- Rolling, slipping
III. Work and Energy
- Fixed-axis, rolling
IV. Angular Momentum
- Bodies and particles

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	
3	Determine the torque of an applied force and solve related problems.	
4	Determine the moment of inertia for a system of masses or solid body and solve related problems.	-18
5	State and apply Newton's $2^{\text {nd }}$ Law for fixed-axis rotation to solve related problems.	19-21
6	Apply work and energy to solve fixed-axis rotation problems.	22-25
7	State and apply Newton's $2^{\text {nd }}$ Law for rolling (rotation and translation) to solve related problems (including those with slipping and without slipping)	26-33
8	Apply work and energy to solve rolling problems.	34-36
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	37-42
10	Apply conservation of angular momentum to solve related problems.	43-49

Newton's 2 ${ }^{\text {nd }}$ Law for Rotation

$$
\begin{aligned}
& \vec{\tau}_{\text {net }}=I \vec{\alpha} \\
& \Sigma \vec{\tau}=I \vec{\alpha}
\end{aligned}
$$

where: $\tau=$ torque
$I=$ rotational inertia $\alpha=$ angular acceleration

Work, Energy, Power for Rotation

- The definitions and units for work, energy, and power do not change for rotational motion!
- Key difference is the relation of work to torque and the relation of kinetic energy to angular speed.
- The equations are just as expected using the analogous rotational quantities:

$$
W=\int \tau d \theta
$$

$$
K=\frac{1}{2} I \omega^{2}
$$

Work, Energy, Power for Rotation

- The Work-Energy Theorem and Conservation of Energy are exactly the same as before:

$$
\begin{gathered}
\Sigma W=\Delta K \\
\Sigma W_{N C}+U_{1}+K_{1}=U_{2}+K_{2}
\end{gathered}
$$

$$
W=\int \tau d \theta
$$

$$
K=\frac{1}{2} I \omega^{2}
$$

Rotation

I. Kinematics

- Angular analogs
II. Dynamics
- Torque and Moment of Inertia
- Fixed-axis
- Rolling, slipping
III. Work and Energy
- Fixed-axis, rolling
IV. Angular Momentum
- Bodies and particles

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	$1-3$
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	$4-7$
3	Determine the torque of an applied force and solve related problems.	$8-12$
4	Determine the moment of inertia for a system of masses or solid body and solve related problems.	$13-18$
5	State and apply Newton' s 2 nd problems. Law for fixed-axis rotation to solve related	$19-21$
6	Apply work and energy to solve fixed-axis rotation problems.	$22-25$
7	State and apply Newton' s 2 sold solve related problems (including those with slipping and without slipping)	$26-33$
8	Apply work and energy to solve rolling problems.	$34-36$
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	$37-42$
10	Apply conservation of angular momentum to solve related problems.	$43-49$

Newton' s $2^{\text {nd }}$ Law for a system of particles

$$
\Sigma \vec{F}_{e x t}=(\Sigma m) \vec{a}_{C M}
$$

Nothing new here - but now the rolling object is the "system of particles"!

Newton' s $2^{\text {nd }}$ Law for rotation without a fixed axis:

$$
e x t=I_{C M}
$$

Similar to the systems of particles concepts - analyze based on the center of mass! The axis of rotation passes through the center of mass and moves with the object.

Rolling Without Slipping

Rolling across a surface - in what direction is the force of friction?

Note the tic marks are separated by one quarter the circumference.
If the wheel rolls without slipping it moves forward a distance equal to its circumference every time it completes one revolution.

What is the acceleration of a Slo-Yo?!

Total Mass:

 axle + rulers$$
m=45.6 \mathrm{~g}
$$

Axle:
$1 / 4$ inch dia. $r=0.3175 \mathrm{~cm}$ $l=34.0 \mathrm{~cm}$

Each Ruler: $M=13 \mathrm{~g}$
$L=30.8 \mathrm{~cm}$ $w=2.6 \mathrm{~cm}$

What is the acceleration of a "Slo-Yo"?!

	$F=m a$	$=I$
	$m g \quad T=m a$	$\operatorname{Tr}=I \underline{a}$
$m g \downarrow$	$m g \quad \frac{I}{2} a=m a$	
Total Mass:	- $\frac{1}{r^{2}} a=m a$	$T=\frac{1}{r^{2}} a$
$\overline{\text { axle }+ \text { rulers }}$ $m=45.6 \mathrm{~g}$	$a=\frac{m g}{I}$	
$m=45.6 \mathrm{~g}$	$m+\frac{1}{r}$	$I=2\left(\frac{M L^{2}}{12}+\frac{M w^{2}}{12}\right)$
$\begin{aligned} & 1 / 4 \text { inch dia. } \\ & r=0.3175 \mathrm{cr} \end{aligned}$	45.6	$I=2(1027.7+7.32)$
$l=34.0 \mathrm{~cm}$	$\begin{gathered} 45.6+20535 \\ 0.447 \mathrm{~N} \end{gathered}$	$I=2070 \mathrm{~g} \cdot \mathrm{~cm}^{2}$
$\frac{\text { Each Ruler }}{M=13 \mathrm{~g}}$	$a=\frac{0.47 \mathrm{k}}{20.58 \mathrm{~kg}}$	$I-2070$
$L=30.8 \mathrm{~cm}$	$a=0.022 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	$\overline{r^{2}}=\overline{0.3175^{2}}$

