Rotation

I. Kinematics

- Angular analogs
II. Dynamics
- Torque and Moment of Inertia
- Fixed-axis
- Rolling, slipping
III. Work and Energy
- Fixed-axis, rolling
IV. Angular Momentum
- Bodies and particles

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	$1-3$
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	$4-7$
3	Determine the torque of an applied force and solve related problems.	$8-12$
4	Determine the moment of inertia for a system of masses or solid body and solve related problems.	$13-18$
5	State and apply Newton' s 2nd Law for fixed-axis rotation to solve related problems.	$19-21$
6	Apply work and energy to solve fixed-axis rotation problems.	$22-25$
7	State and apply Newton's 2nd Law for rolling (rotation and translation) to solve related problems (including those with slipping and without slipping)	$26-33$
8	Apply work and energy to solve rolling problems.	$34-36$
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	$37-42$
10	Apply conservation of angular momentum to solve related problems.	$43-49$

Rotational Inertia

- As explained in Newton' s Laws of Motion any object that has mass has inertia - tendency to maintain state of motion.
- For a rotating body this tendency also depends on the arrangement of mass relative to the axis.
- The quantity "moment of inertia" or "rotational inertia" is defined to satisfy a rotational version of Newton's $2^{\text {nd }}$ Law.

Moment of Inertia - System of Discrete Masses

$$
I=\sum m_{i} r_{i}^{2}
$$

Moment of Inertia - System of Discrete Masses

The exact same set of masses can have a different moment of inertia, depending on the

$$
I=\sum m_{i} r_{i}^{2}
$$

Moment of Inertia - System of Discrete Masses Note: the value of r is a perpendicular distance from an axis of rotation - the radius of a circle in which the particle moves when rotation occurs.

Moment of Inertia - Solid Body

Suppose an arbitrary object rotates about a fixed axis as shown...

Moment of Inertia - Solid Body

$$
I=\int r^{2} d m
$$

where: $d m=$ infinitesimal "piece" of mass $r=$ position of $d m$ relative to axis of rotation

The rotational inertia is the infinite sum of $m r^{2}$ taking the object to be divided into tiny increments of mass denoted $d m$, each a particular distance r from the axis.

$$
I=\frac{1}{3} M L^{2}
$$

$$
I=M R^{2}
$$

uniform thin rod, perpendicular axis at end

uniform thin rod, perpendicular axis at center

perpendicular axis at center
uniform solid cylinder, axis through center

uniform solid cylinder, axis through center parallel to ends
uniform solid sphere, axis through center

$$
\begin{aligned}
& I=\frac{2}{5} M R^{2} \\
& I=\frac{2}{3} M R^{2}
\end{aligned}
$$

hollow spherical shell, axis through center

$$
I=M \frac{w^{2}+l^{2}}{12}
$$

uniform rectangular solid, axis through center parallel to h

$$
I=\frac{3}{10} M R^{2}
$$

uniform solid cone base radius R, axis of symmetry

Moment of Inertia - Parallel Axis Theorem Suppose the object rotates about a different fixed axis as shown here...

Moment of Inertia - Parallel Axis Theorem

$$
I=\int r^{2} d m
$$

where: $d m=$ infinitesimal "piece" of mass $r=$ position of $d m$ relative to axis of rotation

The rotational inertia can be found the same as before but the values of r are different. Or the parallel axis theorem may be applied...

Moment of Inertia - Parallel Axis Theorem

$h=$ perpendicular distance between two parallel axes
$I_{C M}=$ moment of inertia about a parallel axis passing through the center of mass

Moment of Inertia - Parallel Axis Theorem

$h=$ perpendicular distance
$I_{C M}=$ moment of inertia about a parallel axis passing through the center of mass

Moment of Inertia - Parallel Axis Theorem

$h=$ perpendicular distance between axes
$I_{C M}=$ moment of inertia about a parallel axis
passing through the center of mass

Parallel Axis Theorem:

cylinder:

$$
\begin{aligned}
& m_{5}=0.200 \mathrm{~kg} \\
& r_{5}=0.156 \mathrm{~m}
\end{aligned}
$$

$$
I=M h^{2}+I_{C M} \quad \begin{aligned}
& m_{5}=0.200 \mathrm{~kg} \\
& r_{5} r_{5}^{2}+\left(\frac{m_{5} R_{5}^{2}}{4}+\frac{m_{5} l_{5}^{2}}{12}\right) \begin{array}{l}
R_{5}=0.156 \mathrm{~m} \\
l_{5}=0.02525 \mathrm{~m} \\
I_{5}=?
\end{array}
\end{aligned}
$$

Parallel Axis Theorem:

$$
\begin{aligned}
& I=M h^{2}+I_{C M} \\
& I=m_{5} r_{5}{ }^{2}+\left(\frac{m_{5} R_{5}{ }^{2}}{4}+\frac{m_{5} l_{5}^{2}}{12}\right)
\end{aligned}
$$

cylinder:

$$
\begin{aligned}
& m_{5}=0.200 \mathrm{~kg} \\
& r_{5}=0.156 \mathrm{~m} \\
& R_{5}=0.02525 \mathrm{~m} \\
& l_{5}=0.0185 \mathrm{~m} \\
& I_{5}=4.9048 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

