Rotation

- I. Kinematics
 - Angular analogs
- II. Dynamics
 - Torque and Moment of Inertia
 - Fixed-axis
 - Rolling, slipping
- III. Work and EnergyFixed-axis, rolling
- IV. Angular MomentumBodies and particles

TranslationRotationposition
$$\vec{r}$$
angular position $\vec{\theta}$ velocity $\vec{v} = \frac{d\vec{r}}{dt}$ angular velocity $\vec{\omega} = \frac{d\vec{\theta}}{dt}$ acceleration $\vec{a} = \frac{d\vec{v}}{dt}$ angular acceleration $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$

Translation and rotation are two types of motion that can be seen to have a series of analogous concepts and quantities. Inspect the following equations and note the similarities...

$$\frac{\text{Translation}}{\text{position}} \quad \vec{r}$$

$$\text{velocity} \quad \vec{v} = \frac{d\vec{r}}{dt}$$

$$\text{acceleration} \quad \vec{a} = \frac{d\vec{v}}{dt}$$

constant acceleration:

$$\begin{cases} x = x_0 + v_0 t + \frac{1}{2} a t^2 \\ v = v_0 + a t \\ v^2 = v_0^2 + 2a(x - x_0) \end{cases}$$

Rotation angular position $\vec{\omega}$ = angular velocity angular acceleration $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$ constant angular acceleration: $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega = \omega_0 + \alpha t$ $\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right)$

Translation

$$\Sigma \vec{F} = m\vec{a}$$
$$W = \int \vec{F} \cdot d\vec{r}$$
$$K = \frac{1}{2}mv^{2}$$
$$\vec{p} = m\vec{v}$$
$$\vec{J} = \int \vec{F} dt$$

Rotation

$$\Sigma \vec{\tau} = I \vec{\alpha}$$
$$W = \int \vec{\tau} \cdot d\vec{\theta}$$
$$K = \frac{1}{2} I \omega^{2}$$
$$\vec{L} = I \vec{\omega}$$
$$\vec{A} = \int \vec{\tau} dt$$

Translation

mass

M

force \vec{F}

Rotation

rotational inertia (moment of inertia)

 $I = \Sigma r_i^2 m_i = \int r^2 dm$

 $I = I_{CM} + Mh^2$

Translation **Rotation** "Linking" Equations: $s = r\theta$ $v = r\omega$ $a_{\theta} = r\alpha$ $a_r = r\omega^2$ $\vec{l} = \vec{r} \times \vec{p} = r_{\perp} p = r p_{\perp}$

This set of equations "connects" some of the quantities from the two types of motion translation and rotation.

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	1 – 3
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	4 – 7
3	Determine the torque of an applied force and solve related problems.	8-12
4	Determine the moment of inertia for a system of masses or sold body and solve related problems.	13 – 18
5	State and apply Newton' s 2 nd Law for fixed-axis rotation to solve related problems.	19 – 21
6	Apply work and energy to solve fixed-axis rotation problems.	22 - 25
7	State and apply Newton' s 2 nd Law for rolling (rotation and translation) to solve related problems (including those with slipping and without slipping)	26 - 33
8	Apply work and energy to solve rolling problems.	34 - 36
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	37 – 42
10	Apply conservation of angular momentum to solve related problems.	43 - 49

How much does this rotating object move? How fast is it moving? Is it accelerating?

Taking the object as a *system* its *speed* and *acceleration* are both *zero*! This is because the center of mass of the object/system is not in motion and therefore one could say that the object's position is not changing. **Angular position** is an indicator of the orientation of an object relative to a reference. Symbol: θ

θ The direction of this vector is given by the right hand rule. Often it is simply described as clockwise (–) or counterclockwise (+).

Angular displacement is the net change in angular position.

Angular displacement is the net change in angular position. $\Delta \theta = \theta - \theta_0$

Angular velocity is the rate of change in angular position. Symbol: ω

Angular speed describes how rapidly an object is spinning or rotating. The greater the value the more rapid the rate of change in the angular orientation.

Angular velocity is the rate of change in angular position. Symbol: $\overline{\omega}$

Angular speed is the magnitude of angular velocity. Symbol: ω

Shown here is a 3-D perspective. The angular velocity *vector* is defined as an arrow pointing along or parallel to the axis of rotation. The direction is given by the "right hand rule": curl the fingers of the right hand in the direction of the rotation and the thumb points in the direction of the vector.

Angular acceleration is the rate of change in angular velocity. Symbol: α

 (\mathcal{L}) α In this example the object's rate of spinning is decreasing – therefore the angular acceleration is in the opposite direction (because the change in angular speed is negative).

Angular acceleration is the rate of change in angular velocity. Symbol: $\overline{\alpha}$

 ω

 $\bar{\alpha}$

Another illustration of the right hand rule. Here, because the spin rate is decreasing, the angular acceleration and angular velocity vectors point in opposite directions along the axis of rotation.

$$\frac{\text{Translation}}{\text{position}} \quad \vec{r}$$

$$\text{velocity} \quad \vec{v} = \frac{d\vec{r}}{dt}$$

$$\text{acceleration} \quad \vec{a} = \frac{d\vec{v}}{dt}$$

constant acceleration:

$$\begin{cases} x = x_0 + v_0 t + \frac{1}{2} a t^2 \\ v = v_0 + a t \\ v^2 = v_0^2 + 2a(x - x_0) \end{cases}$$

Rotation angular position $\vec{\omega}$ = angular velocity angular acceleration $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$ constant angular acceleration: $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega = \omega_0 + \alpha t$ $\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right)$

How does the *translation* of an individual particle relate to the *rotation* of the whole?

Arc length, *s*, relates to angular displacement:

Speed and velocity relate to angular speed and angular velocity:

Radial and tangential acceleration relate to angular velocity and angular acceleration:

Radial and tangential acceleration relate to angular velocity and angular acceleration:

