Rotation

I. Kinematics

- Angular analogs

II. Dynamics

- Torque and Moment of Inertia
- Fixed-axis
- Rolling, slipping
III. Work and Energy
- Fixed-axis, rolling
IV. Angular Momentum
- Bodies and particles

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	1-3
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	
3	Determine the torque of an applied force and solve related problems.	8-12
4	Determine the moment of inertia for a system of masses or sold body and solve related problems.	13-18
5	State and apply Newton's $2^{\text {nd }}$ Law for fixed-axis rotation to solve related problems.	19-21
6	Apply work and energy to solve fixed-axis rotation problems.	22-25
7	State and apply Newton's $2^{\text {nd }}$ Law for rolling (rotation and translation) to solve related problems (including those with slipping and without slipping)	26-33
8	Apply work and energy to solve rolling problems.	34-36
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	37-42
10	Apply conservation of angular momentum to solve related problems.	43-49

Torque

- A torque is something that can cause angular acceleration.
- A force acting on an object can create torque on the object.
- The resulting torque depends not only on the force applied but also on the position at which the force is applied.
- If a force is a "push or pull", then a torque is a "twist" or a "torsion".
- A torque is also sometimes referred to as a "moment" - especially in engineering.

Torque quantifies "how effectively" a force causes angular acceleration. The same force applied at twice the distance from the axis causes twice the angular acceleration and constitutes twice the torque.
torque, τ

Torque quantifies "how effectively" a force causes angular acceleration. The same force applied at twice the distance from the axis causes twice the angular acceleration and constitutes twice the torque.

Torque

$$
\begin{gathered}
\vec{\tau}=\vec{r} \times \vec{F} \\
\tau=r_{\perp} F \\
\tau=r F_{\perp} \\
\tau=r F \sin \theta
\end{gathered}
$$

where: $F=$ force
$r=$ position at which force is applied relative to axis of rotation.

Torque

$$
\begin{gathered}
\vec{\tau}=\vec{r} \times \vec{F} \\
\tau=r_{\perp} F \\
\tau=r F_{\perp} \\
\tau=\left|r_{x} F_{y}-r_{y} F_{x}\right|
\end{gathered}
$$

where: $F=$ force
$r=$ position at which force is applied relative to axis of rotation.

$$
\begin{aligned}
\tau & =r F \sin \theta \\
\tau & =2 \cdot 10 \sin 90^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\tau=r_{\perp} F \\
\tau=2 \cdot 10
\end{gathered}
$$

$$
\tau=20 \mathrm{Nm}, \mathrm{CCW}
$$

$$
\begin{aligned}
\tau & =r F \sin \theta \\
\tau & =4 \cdot 20 \sin 90^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\tau=r_{\perp} F \\
\tau=4 \cdot 20
\end{gathered}
$$

$$
\tau=80 \mathrm{Nm}, \mathrm{CW}
$$

$$
\begin{aligned}
& \tau=r F \sin \theta \\
& \tau=5 \cdot 20 \sin 127^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\tau=r_{\perp} F \\
\tau=4 \cdot 20
\end{gathered}
$$

$$
\tau=80 \mathrm{Nm}, \mathrm{CW}
$$

$$
\begin{aligned}
& \tau=r F \sin \theta \\
& \tau=3 \cdot 10 \sin 127^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\tau=r F_{\perp} \\
\tau=4 \cdot 20
\end{gathered}
$$

$$
\tau=24 \mathrm{Nm}, \mathrm{CW}
$$

$$
\tau=r_{\perp} F
$$

$$
\tau=2.4 \cdot 10
$$

As shown in this example there are multiple approaches to determine the torque. Note that the perpendicular distance 2.4 m is an example of what is sometimes called a "moment arm", "torque arm", or "leverage arm".

Mini-Lab: Torque

- Use a loop of string and a spring scale to lift and rotate meter stick, pivoting about one end.
- Note the point of application, r, the amount of force, F, and the direction, θ.
- Repeat with different values for each parameter.
- Calculate torque for each trial and compare what should be observed?

r	F	θ	τ

Use your hand to prevent one end of the stick from moving, thus forming a pivot.

