Rotation

- I. Kinematics
 - Angular analogs
- **II.** Dynamics
 - Torque and Moment of Inertia
 - Fixed-axis
 - Rolling, slipping
- III. Work and EnergyFixed-axis, rolling
- IV. Angular MomentumBodies and particles

	The student will be able to:	HW:
1	State and apply the relations between angular position, angular displacement, angular speed, angular velocity, and angular acceleration to solve related problems.	1 – 3
2	State and apply the relations between the angular (or rotational) motion of a body or system and the linear (or translational) motion of a point on the body or system.	4 – 7
3	Determine the torque of an applied force and solve related problems.	8-12
4	Determine the moment of inertia for a system of masses or sold body and solve related problems.	13 – 18
5	State and apply Newton' s 2 nd Law for fixed-axis rotation to solve related problems.	19 – 21
6	Apply work and energy to solve fixed-axis rotation problems.	22 - 25
7	State and apply Newton' s 2 nd Law for rolling (rotation and translation) to solve related problems (including those with slipping and without slipping)	26-33
8	Apply work and energy to solve rolling problems.	34 - 36
9	Determine angular momentum for a particle, system, or rotating body and relate to torque and angular impulse to solve problems.	37 – 42
10	Apply conservation of angular momentum to solve related problems.	43 – 49

Torque

- A torque is something that can cause angular acceleration.
- A force acting on an object can create torque on the object.
- The resulting torque depends not only on the force applied but also on the position at which the force is applied.
- If a force is a "push or pull", then a torque is a "twist" or a "torsion".
- A torque is also sometimes referred to as a "moment" especially in engineering.

Torque quantifies "how effectively" a force causes angular acceleration. The same force applied at twice the distance from the axis causes twice the angular acceleration and constitutes twice the torque.

Torque quantifies "how effectively" a force causes angular acceleration. The same force applied at twice the distance from the axis causes twice the angular acceleration and constitutes twice the torque.

Torque

where: F = force r = position at which force is applied relative to axis of rotation.

Torque

$$\vec{\tau} = \vec{r} \times \vec{F}$$
$$\tau = r_{\perp}F$$
$$\tau = rF_{\perp}$$
$$\tau = |r_{x}F_{y} - r_{y}F_{x}|$$

where: F = force r = position at which force is applied relative to axis of rotation.

F = 10 N

 $r = 2 \mathrm{m}$

As shown in this example there are multiple approaches to determine the torque. Note that the perpendicular distance 2.4 m is an example of what is sometimes called a "moment arm", "torque arm", or "leverage arm".

Mini-Lab: Torque

- Use a loop of string and a spring scale to lift and rotate meter stick, pivoting about one end.
- Note the point of application, r, the amount of force, F, and the direction, θ.
- Repeat with different values for each parameter.
- Calculate torque for each trial and compare what should be observed?

