Equilibrium \& Oscillation

I. Equilibrium

- conditions
- stable vs. unstable
II. Oscillation
- Simple Harmonic Motion
- Mass and Spring
- Simple Pendulum
- Physical Pendulum

	The student will be able to:	HW:
1	State and apply the conditions for a particle or rigid body to be in equilibrium and solve related problems.	$1-12$
2	State and apply the condition for stable equilibrium and contrast with unstable equilibrium and solve related problems.	13,14
3	Solve problems involving Simple Harmonic Motion including those concerning: conditions for occurrence, relation between period and the force constant k, relation between period and angular frequency, analyses of position, velocity, and acceleration using sine and cosine.	$15-24$
4	Solve problems involving simple pendulums.	$25-27$
5	Solve problems involving physical pendulums.	$28-30$

Equilibrium

- A rigid body is said to be in equilibrium if its linear and angular acceleration are both zero.
- An object at rest and not rotating is in equilibrium. But also motion with a constant velocity and/or constant angular velocity is considered to be equilibrium.

Conditions of Equilibrium:

Any rigid body in equilibrium must have zero net force and zero net torque!

$$
\Sigma \vec{F}=0\left\{\begin{array}{l}
\Sigma F_{x}=0 \\
\Sigma F_{y}=0
\end{array}\right.
$$

$$
\Sigma \vec{\tau}=0
$$

About Torque and Equilibrium . . .

- In order to determine torque it is necessary to know the moment arm, \mathbf{r}, relative to an axis of rotation. ($\tau=\mathbf{r} \times \mathbf{F}$)
- Because we are basically assuming there is no rotation, it is not important where the axis is located or what axis is used to determine \mathbf{r}.
- Put another way, you can choose any convenient axis because the object is not rotating about any axis.

A uniform horizontal beam of mass $10 \underline{0}$ grams

 and length 1.00 m rests on two supports as shown. Determine the normal force at each support.

Draw a free body diagram and apply the conditions of equilibrium . . .

Net force equals zero:

$$
\begin{aligned}
& \Sigma F_{y}=0=F_{N 1}+F_{N 2}-F_{G} \\
& F_{N 1}+F_{N 2}-m g=0 \\
& F_{N 1}+F_{N 2}=m g
\end{aligned}
$$

Net torque about the center of mass equals zero:

$$
\Sigma \tau_{C M}=0=-0.3 F_{N 1}+0.1 F_{N 2}
$$

OR, net torque about point A equals zero:

$$
\Sigma \tau_{A}=0=-0.3 F_{G}+0.4 F_{N 2}
$$

Either will work BUT, $2^{\text {nd }}$ equation is easier to use!

Solving the equations for force and torque yields the following solution:

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{N} 1}=0.25 \mathrm{mg}=0.245 \mathrm{~N}, \text { upward } \\
& \mathbf{F}_{\mathrm{N} 2}=0.75 \mathrm{mg}=0.735 \mathrm{~N}, \text { upward }
\end{aligned}
$$

Note that these values satisfy all of the equations that were listed - if it is not moving and not rotating then there must be zero net force and zero net torque.

It is usually best to take the torque about a point through which an unknown force acts - thus eliminating a variable in the resulting equation.

Summarizing. . .

- To analyze a rigid body that is in equilibrium a series of equations involving force can be written.
- Set the sum of all x-forces equal to zero, set the sum of all y-forces equal to zero.
- Set the net torque about a convenient axis equal to zero.
- Solve the resulting system of equations.

Equilibrium \& Oscillation

I. Equilibrium

- conditions
- stable vs. unstable
II. Oscillation
- Simple Harmonic Motion
- Mass and Spring
- Simple Pendulum
- Physical Pendulum

	The student will be able to:	$\mathrm{HW}:$
1	State and apply the conditions for a particle or rigid body to be in equilibrium and solve related problems.	$1-12$
2	State and apply the condition for stable equilibrium and contrast with unstable equilibrium and solve related problems.	13,14
3	Solve problems involving Simple Harmonic Motion including those concerning: conditions for occurrence, relation between period and the force constant k, relation between period and angular frequency, analyses of position, velocity, and acceleration using sine and cosine.	$15-24$
4	Solve problems involving simple pendulums.	$25-27$
5	Solve problems involving physical pendulums.	$28-30$

Stable vs. Unstable Equilibrium

- A stable equilibrium "resists change" and there is a natural tendency to return to equilibrium when perturbed.
- There is a "restoring force" that is directed toward any position of stable equilibrium.
- A force acts in a direction away from any position of unstable equilibrium.

Equilibrium for One-dimensional Motion

For any position of equilibrium:

$$
F=0
$$

Unstable equilibrium:

$$
\begin{aligned}
& F=4+3 x-x^{2} \\
& F=0 \\
& \frac{d F}{d x}<0 \\
& \frac{d F}{d x}>0
\end{aligned}
$$

$$
\begin{aligned}
& F=4+3 x-x^{2} \\
& F=0 \quad x=-1,4 \\
& \frac{d F}{d x}<0 \quad x=4 \\
& \frac{d F}{d x}>0 \quad x=-1
\end{aligned}
$$

$$
\begin{aligned}
& F=4+3 x-x^{2} \\
& F=0 \quad x=-1,4 \\
& \frac{d F}{d x}<0 \quad x=4 \\
& \frac{d F}{d x}>0 \quad x=-1
\end{aligned}
$$

$$
\begin{aligned}
& F=4+3 x-x^{2} \\
& F=0 \\
& \frac{d F}{d x}<0 \\
& \frac{d F}{d x}>0
\end{aligned}
$$

$$
\begin{gathered}
F=4+3 x-x^{2} \\
U=-\int F d x \\
F=-\frac{d U}{d x} \\
U=-4 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3}
\end{gathered}
$$

Equilibrium for One-dimensional Motion

For any position of equilibrium:

$$
\frac{d U}{d x}=0
$$

Stable equilibrium:

Unstable equilibrium:

$$
\begin{aligned}
& \frac{d^{2} U}{d x^{2}}>0 \\
& \frac{d^{2} U}{d x^{2}}<0
\end{aligned}
$$

$$
\begin{aligned}
& U=-4 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3} \\
& \frac{d U}{d x}=0 \\
& \frac{d^{2} U}{d x^{2}}>0 \\
& \frac{d^{2} U}{d x^{2}}<0
\end{aligned}
$$

$$
\begin{aligned}
& U=-4 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3} \\
& \frac{d U}{d x}=0 \quad x=-1,4 \\
& \frac{d^{2} U}{d x^{2}}>0 \quad x=4 \\
& \frac{d^{2} U}{d x^{2}}<0 \quad x=-1
\end{aligned}
$$

$$
\begin{aligned}
& U=-4 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3} \\
& \frac{d U}{d x}=0 \quad x=-1,4 \\
& \frac{d^{2} U}{d x^{2}}>0 \quad x=4 \\
& \frac{d^{2} U}{d x^{2}}<0 \quad x=-1
\end{aligned}
$$

