
Simple Harmonic Motion

Understanding Oscillations
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Equilibrium & Oscillation

I. Equilibrium
- conditions
- stable vs. unstable

II. Oscillation
- Simple Harmonic Motion
- Mass and Spring
- Simple Pendulum
- Physical Pendulum
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The student will be able to: HW:
1 State and apply the conditions for a particle or rigid body 

to be in equilibrium and solve related problems.
1 – 12

2 State and apply the condition for stable equilibrium and 
contrast with unstable equilibrium and solve related 
problems.

13, 14

3 Solve problems involving Simple Harmonic Motion 
including those concerning:  conditions for occurrence, 
relation between period and the force constant k, relation 
between period and angular frequency, analyses of 
position, velocity, and acceleration using sine and cosine.

15 – 24

4 Solve problems involving simple pendulums. 25 – 27
5 Solve problems involving physical pendulums. 28 – 30
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Basic Ideas:
• Simple Harmonic Motion (SHM) is a special 

type of oscillation that occurs under certain 
conditions.

• In order for SHM to occur, there must be a 
restoring force proportional to displacement 
from a position of equilibrium.

• The oscillation in SHM is sinusoidal (can be 
modeled by the sine function).
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Condition for SHM

Where: Σ𝐹⃑= net force acting on object

k = a positive constant 

𝑥⃑ = position relative to equilibrium

Σ𝐹⃑ = −𝑘𝑥⃑
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The red arrows indicate the net force.
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12 N

What would be the value of k for this example?



–5    –4    –3    –2    –1     0 1     2      3      4      5 m

– 7 N4 N

What would be the value of k for this example?

k = 2 N/m

– 2 m 3.5 m

k = F
x
=
4
2
=
7
3.5
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Σ𝐹⃑ = −𝑘𝑥⃑
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Resulting Sinusoidal Motion

If the net force meets the condition F = –kx, then the position 
function x(t) must satisfy the differential equation of motion 
shown above.  An example of a solution has the form:
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Σ𝐹⃑ = 𝑚𝑎⃑

−𝑘𝑥 = 𝑚
𝑑!𝑥
𝑑𝑡!

𝑥 = 𝐴 sin 𝜔𝑡 + 𝛿

𝜔 =
𝑘
𝑚

A = the amplitude of the oscillation
ω = angular frequency
δ = phase angle



Resulting Motion

k
mT p2=

Where: T = period of oscillation

k = the constant from F = -kx

m = mass of object
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Kinematics of SHM
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𝑥 = 𝐴 sin 𝜔𝑡

𝑣 = 𝐴𝜔 cos 𝜔𝑡

𝑎 = −𝐴𝜔! sin 𝜔𝑡



k
mT p2=

It is remarkable what is not in this equation –
the amplitude or size of the oscillation.  In 
other words the period does not depend on the 
size of the oscillations!

Notes on Period
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Energy
of 

SHM
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Mass on a Spring

• According to Hooke’s Law any common steel 
spring will apply a force that is proportional to 
its elongation or compression 

• Every spring has a unique ratio of force to 
change designated as k, the “spring constant”.

• Therefore a mass attached to a spring will 
undergo SHM.

• In this situation the spring constant is the same 
k as found in the condition for SHM.

© Matthew W. Milligan



Equilibrium & Oscillation

I. Equilibrium
- conditions
- stable vs. unstable

II. Oscillation
- Simple Harmonic Motion
- Mass and Spring
- Simple Pendulum
- Physical Pendulum
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The student will be able to: HW:
1 State and apply the conditions for a particle or rigid body 

to be in equilibrium and solve related problems.
1 – 12

2 State and apply the condition for stable equilibrium and 
contrast with unstable equilibrium and solve related 
problems.

13, 14

3 Solve problems involving Simple Harmonic Motion 
including those concerning:  conditions for occurrence, 
relation between period and the force constant k, relation 
between period and angular frequency, analyses of 
position, velocity, and acceleration using sine and cosine.

15 – 24

4 Solve problems involving simple pendulums. 25 – 27
5 Solve problems involving physical pendulums. 28 – 30
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Pendulum
• A pendulum will exhibit SHM to a high degree 

of accuracy as long as the amplitude of its 
swing is less than 10° or so (from vertical).

• In this situation it can be shown that k = mg/L.
• Therefore the period of a pendulum is given by:

g
LT p2=L
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Simple Pendulum
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The red arrow is 
tension in the string.

Orange arrows are the 
components of the tension.

On this and following pages 
the components Tx and Ty
are shown correct to scale 
for an oscillating pendulum.

Go through the pages and 
pay attention to the relative 
sizes of the x and y
components…

Simple Pendulum
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Simple Pendulum
The red arrow is 

tension in the string.

Orange arrows are the 
components of the tension.

Comparing this page to the 
previous one, note that the 
x-component of the tension 
force has essentially 
doubled as the x-coordinate 
of the object’s position has 
doubled.  The y-component 
of tension has changed very 
little.



© Matthew W. Milligan

Simple Pendulum

Orange arrows are the 
components of the tension.

Comparing this page to the 
previous two, note that the 
x-component of the tension 
force changes in proportion 
to the x-coordinate of the 
object’s position.  The y-
component of tension has 
changed very little.

The red arrow is 
tension in the string.
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Simple Pendulum

Orange arrows are the 
components of the tension.

Once the pendulum reaches 
an angle as great as this 
there is a barely noticeable 
deviance from the apparent 
direct proportion between Tx
and x that was observed at 
smaller angles.

The red arrow is 
tension in the string.
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Simple Pendulum

Orange arrows are the 
components of the tension.

The deviance from the 
apparent direct proportion 
observed at smaller angles is 
now quite obvious – the 
component Tx is clearly less 
than 5 times as great here, at 
x-coordinate = 5, than it was 
at x-coordinate = 1.

The red arrow is 
tension in the string.
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Simple Pendulum

Orange arrows are the 
components of the tension.

The value of the component 
Ty continues to decrease as 
the angle increases.  At no 
point is it equal to the 
weight of the object, 
because a pendulum is 
accelerating at all times. 

The red arrow is 
tension in the string.
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Simple Pendulum

Orange arrows are the 
components of the tension.

Only if a pendulum swings 
a relatively small amount is 
it a good approximation to 
assume the vertical 
acceleration is zero and the 
net force is proportional to 
displacement from 
equilibrium.

The red arrow is 
tension in the string.
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The red curve shows the 
variance in the x-component 
of a simple pendulum.  
The blue line shows the 
assumption of simple 
harmonic motion, 
where Tx = –mg/L.  
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angle from vertical 
(degrees)

Notice close agreement 
to about 10 degrees.
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The orange curve shows the 
variance in the x-component 
of a simple pendulum.  
The purple line shows the 
assumption of simple 
harmonic motion, 
where Tx = –mg/L.  
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x-coordinate as a 
percentage of length

Notice close agreement 
for swinging amounts as 
great as 20% of length.


