The Sun's Wobble

Matt Milligan
Farragut High School
Knoxville, TN

Upsilon Andromedae: A Multiple Companions System

Our Solar System, Inner Planets \& Jupiter

As shown in the May 2003 issue of Sky and Telescope magazine this diagram shows how the Sun "wobbles" due to the combined effect of the gravity of each of the nine planets.

NASA's Space Interferometry Mission (SIM), scheduled for launch in 2009, will perform astrometric measurements of stars to reveal minuscule sideways wobbles caused by planets as small as several Earth masses. Below: The wobble of our Sun due to its orbiting planets (mostly Jupiter and Saturn) as would be seen from 33 light-years away. SIM should have a precision approaching 1 microarcsecond, a thousandth the length of each axis here.

Challenge: Use AP level physics to produce this graph!

[^0]

[^1]
Which four planets have the greatest gravitational pull on the Sun?
 (in order...)

1. Jupiter

2. Venus
3. Saturn
4. Earth

Which four planets have the greatest effect on the position of the Sun? (in order...)

\author{

1. Jupiter
}
2. Saturn
3. Neptune
4. Uranus

Mass and Orbital Radius (relative to Earth)

	m	r	$m \cdot r$	m / r^{2}
Mercury	0.0553	0.387	0.0214	0.369
Venus	0.815	0.723	0.59	1.56
Earth	1.00	1.00	1.00	1.00
Mars	0.107	1.52	0.163	0.0461
Jupiter	318	5.20	1650	11.8
Saturn	95.1	9.54	907	1.04
Uranus	14.5	19.2	279	0.0395
Neptune	17.1	30.1	513	0.0189
Pluto	0.0021	39.5	0.0829	0.000001

	$r \cdot m$	m / r^{2}
Mercury	0.0214	0.369
Venus	0.59	1.56
Earth	1.00	1.00
Mars	0.163	0.0461
Jupiter	1650	11.8
Saturn	907	1.04
Uranus	279	0.0395
Neptune	513	0.0189
Pluto	0.0829	0.000001

In order of gravitational force on Sun...

	$r \cdot m$	m / r^{2}
Jupiter	1650	11.8
Venus	0.59	1.56
Saturn	907	1.04
Earth	1.00	1.00
Mercury	0.0214	0.369
Mars	0.163	0.0461
Uranus	279	0.0395
Neptune	513	0.0189
Pluto	0.0829	0.000001

In order of influence on wobble of Sun...

	$r \cdot m$	m / r^{2}
Jupiter	1650	11.8
Saturn	907	1.04
Neptune	513	0.0189
Uranus	279	0.0395
Earth	1.00	1.00
Venus	0.59	1.56
Mars	0.163	0.0461
Pluto	0.0829	0.000001
Mercury	0.0214	0.369

But why does the value of $r m$ matter?

Modeling the Sun's Wobble:

- Assume the solar system to be an isolated system with no external forces.
- The center of mass of the system should not accelerate relative to distant stars based on this assumption.
- The internal forces of gravitation have no effect on the center of mass.
- At all points in time the Sun and planets must be positioned such that the center of mass maintains a "constant" position.

$$
\begin{gathered}
\vec{r}_{C M}=\frac{\sum m \vec{r}}{\sum m} \\
0=\frac{m_{\text {sun }} \vec{r}_{\text {sun }}+\left(\sum m \vec{r}\right)_{\text {planets }}}{\sum m} \\
0=m_{\text {sun }} \vec{r}_{\text {sun }}+\left(\sum m \vec{r}\right)_{\text {planets }} \\
m_{\text {sun }} \vec{r}_{\text {sun }}=-\left(\sum m \vec{r}\right)_{\text {planets }}
\end{gathered}
$$

Graphing the Sun's Wobble:

- Let the center of mass be the origin of a coordinate system
- Assume the planets move in perfect circles about this origin (not true)
- Model the motion of each planet by parametric equations of the form: $x=r \cos (\omega t+\delta)$ and $y=r \sin (\omega t+\delta)$
- Set $x_{\mathrm{cm}}=0$ and $y_{\mathrm{cm}}=0$ and then solve for the x and y coordinates of the Sun's position

$$
\begin{gathered}
m_{\text {sun }} \vec{r}_{\text {sun }}=-\left(\sum m \vec{r}\right)_{\text {planets }} \\
\vec{r}_{\text {sun }}=\frac{-\left(\sum m \vec{r}\right)_{\text {planets }}}{m_{\text {sun }}} \\
x_{\text {sun }}=-\frac{m_{1} r_{1} \cos \left(\omega_{1} t+\delta_{1}\right)+m_{2} r_{2} \cos \left(\omega_{2} t+\delta_{2}\right)+\ldots}{m_{\text {sun }}} \\
y_{\text {sun }}=-\frac{m_{1} r_{1} \sin \left(\omega_{1} t+\delta_{1}\right)+m_{2} r_{2} \sin \left(\omega_{2} t+\delta_{2}\right)+\ldots}{m_{\text {sun }}}
\end{gathered}
$$

Sun's Path Including the Effect of:

Venus
Earth
Jupiter
Saturn
Uranus
Neptune

Sun's Path Including the Effect of:

Earth
Jupiter
Saturn
Uranus
Neptune

Sun's Path Including the Effect of:

Jupiter
Saturn
Uranus
Neptune

Sun's Path Including the Effect of:

Jupiter
Saturn

Neptune

Sun's Path Including the Effect of:

Jupiter
Saturn
Uranus
Neptune

Sun's Path Including the Effect of:

Jupiter Saturn Uranus

Sun's Path Including the Effect of:

Jupiter
Saturn

Sun's Path Including the Effect of:

Jupiter

Sun's Path Including the Effect of:

Saturn

x-components of the Sun's Wobble

x-components of the Sun's Wobble

x-velocity
 $(\mathrm{m} / \mathrm{s})^{20}$

So, how does one actually create this graphs using a graphing calculator?

Positions of Planets Jan. 1, 1960

Arbitrarily the state of the solar system on January 1, 1960 is chosen as an initial position. The resulting graphs show time elapsed from that point, so $t=0$ represents 01/01/1960.

Neptune 217°

$$
\delta=3.79 \mathrm{rad}
$$

Uranus 139°
$\delta=2.43$ rad

Positions of Planets Jan. 1, 1960

Arbitrarily the state of the solar system on January 1,
1960 is chosen as an initial position. The resulting graphs show time elapsed from that point, so $t=0$ represents 01/01/1960.

Note: Mercury and Mars have a negligible impact on the wobble of the Sun and therefore are ignored.

1 cexes

$$
\begin{aligned}
& \text { Venus } 175^{\circ} \\
& \delta=3.65 \mathrm{rad}
\end{aligned}
$$

Venus $175^{\circ} \longrightarrow$ yernal equinox $=0^{\circ}$
\qquad
image credit: JPL Solar System Dynamics

System Data Relative to Earth

	m	r	T	δ
Venus	0.815	0.723	0.615	3.054
Earth	1.00	1.00	1.00	1.745
Jupiter	318	5.20	11.86	4.450
Saturn	95.1	9.54	29.42	4.887
Uranus	14.5	19.2	83.75	2.426
Neptune	17.1	30.1	163.7	3.787

Using TI-Calculator

- Save data into lists of numbers.

$$
\begin{array}{ll}
\text { TI-83/84: } & \{0.815,1,318,95.1,14.5,17.1\} \rightarrow L_{1} \\
\text { TI-89: } & \{0.815,1,318,95.1,14.5,17.1\} \rightarrow m
\end{array}
$$

- Set mode to Parametric and Radian.
- Enter $x(t)$ and $y(t)$.

$$
\begin{array}{ll}
\text { TI-83/84: } & x(t)=-\operatorname{sum}\left(L_{1}{ }^{*} L_{2} * \cos \left(2 * \pi^{*} T / L_{3}+L_{4}\right)\right) \\
\text { TI-89: } & x(t)=-\operatorname{sum}\left(m^{*} r^{*} \cos \left(2 * \pi^{*} t / T+\delta\right)\right)
\end{array}
$$

- Adjust Window parameters: $0<t<40$, steps of 0.5 and $-3000<x$ and $y<3000$. Then Zoom Square.

	m or L_{1}	r or L_{2}	T or L_{3}	δ or L_{4}
Venus	0.815	0.723	0.615	3.047
Earth	1.00	1.00	1.00	1.748
Jupiter	318	5.20	11.86	4.460
Saturn	95.1	9.54	29.42	4.887
Uranus	14.5	19.2	83.75	2.428
Neptune	17.1	30.1	163.7	3.798

$T I-83 / 84: x(t)=-\operatorname{sum}\left(L_{1}{ }^{*} L_{2}{ }^{*} \cos \left(2 * \pi^{*} T / L_{3}+L_{4}\right)\right)$ TI-89: $\quad x(t)=-\operatorname{sum}\left(m^{*} r^{*} \cos \left(2^{*} \pi^{*} t / T+\delta\right)\right)$
Adjust Window parameters: $0<t<40$, steps of 0.5 and $-3000<x$ and $y<3000$. Then Zoom Square.
Note: divide by 1550 to get position in Sun radii.

[^0]: Matthew Milligan Farragut High School
 -4.110

[^1]: Matthew Milligan Farragut High School -4.415

