Advanced Kinematics

- I. Vector addition/subtraction
- **II.** Components
- III. Relative Velocity
- IV. Projectile Motion
- V. Use of Calculus (nonuniform acceleration)
- VI. Parametric Equations

	The student will be able to:	HW:
1	Calculate the components of a vector given its magnitude and direction.	1 – 2
2	Calculate the magnitude and direction of a vector given its components.	3-4
3	Use vector components as a means of analyzing/solving 2-D motion problems.	5-6
4	Add or subtract vectors analytically (using trigonometric calculations).	7 - 9
5	Use vector addition or subtraction as a means of solving relative motion problems.	10 – 15
6	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems.	16 – 24
7	Use derivatives to determine speed, velocity, or acceleration and solve for extrema and/or zeros.	25 – 27
8	Use integrals to determine distance, displacement, change in speed or velocity and solve for functions thereof given initial conditions.	28-31
9	Solve problems involving parametric equations that describe motion components	32 - 34

Rule for Vector Addition

To add vectors, place the vectors head-to-tail. The resultant sum is the vector that extends from the tail of the first to the head of the last.

Vector Subtraction

$$\mathbf{R} = 20.0 \text{ m}, 270.0^{\circ}$$
$$\mathbf{S} = 10.0 \text{ m}, 30.0^{\circ}$$
$$-\mathbf{S} = 10.0 \text{ m}, 210.0^{\circ}$$
$$\mathbf{R} - \mathbf{S} = \mathbf{R} + (-\mathbf{S})$$
$$\mathbf{R} - \mathbf{S} = 26.5 \text{ m}, 109.1^{\circ}$$

To subtract a vector, add its opposite.

A vector's opposite has the same magnitude but opposite direction (differs by 180°).

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the sum extends along a diagonal outward from the tails.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the difference is along a diagonal from head to head.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the difference is along a diagonal from head to head.

Components

- Components are "parts that make up a whole".
- A vector's components indicate the partial amounts extending in perpendicular directions.
- Components indicate *how much up or down* and *how much left or right* a vector points.
- Any given vector is equal to the sum of its components by the head-to-tail rule or parallelogram rule.

Example of correct notation and terminology:

Vector A points 5.00 m up and 8.66 m to the left. © Matthew W. Milligan

Unit Vectors

- A "unit vector" is a convenient alternate notation for indicating components and vector directions.
- By definition a unit vector always has a magnitude of exactly 1 and a particularly defined direction.
- Unit vectors for a given coordinate system are always perpendicular to one another.

Unit Vectors

Rectangular Coordinates:

- $\hat{i} = 1$ in the positive x-direction
- $\hat{j} = 1$ in the positive *y*-direction

Polar Coordinates:

- $\hat{r} = 1$ in the positive radial direction
- $\hat{\theta} = 1$ in a direction perpendicular to \hat{r} and in a counterclockwise sense

Example of alternate notation:

$$\vec{A} = \left(-8.66 \ \hat{i} + 5.00 \ \hat{j}\right) \mathrm{m}$$

Vector A points 5.00 m up and 8.66 m to the left. © Matthew W. Milligan