Advanced Kinematics

I. Vector addition/subtraction
II. Components
III. Relative Velocity
IV. Projectile Motion
V. Use of Calculus
(nonuniform acceleration)
VI. Parametric Equations

	The student will be able to:	HW:
1	Calculate the components of a vector given its magnitude and direction.	$1-2$
2	Calculate the magnitude and direction of a vector given its components.	$3-4$
3	Use vector components as a means of analyzing/solving 2-D motion problems.	$5-6$
4	Add or subtract vectors analytically (using trigonometric calculations).	$7-9$
5	Use vector addition or subtraction as a means of solving relative motion problems.	$10-15$
6	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems.	$16-24$
7	Use derivatives to determine speed, velocity, or acceleration and solve for extrema and/or zeros.	$25-27$
8	Use integrals to determine distance, displacement, change in speed or velocity and solve for functions thereof given initial conditions.	$28-31$
9	Solve problems involving parametric equations that describe motion components	$32-34$

Rule for Vector Addition

To add vectors, place the vectors head-to-tail. The resultant sum is the vector that extends from the tail of the first to the head of the last.

$$
\vec{A}+\vec{B}+\vec{C}=\vec{\Sigma}
$$

Vector Subtraction

$$
\begin{aligned}
& \mathbf{R}=20.0 \mathrm{~m}, 270.0^{\circ} \\
& \mathbf{S}=10.0 \mathrm{~m}, 30.0^{\circ} \\
& -\mathbf{S}=10.0 \mathrm{~m}, 210.0^{\circ} \\
& \hline \mathbf{R}-\mathbf{S}=\mathbf{R}+(-\mathbf{S}) \\
& \mathbf{R}-\mathbf{S}=26.5 \mathrm{~m}, 109.1^{\circ}
\end{aligned}
$$

To subtract a vector, add its opposite.
A vector's opposite has the same magnitude but opposite direction (differs by 180°).

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...
...the sum extends along a diagonal outward from the tails.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...
...the difference is along a diagonal from head to head.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...
...the difference is along a diagonal from head to head.

Components

- Components are "parts that make up a whole".
- A vector' s components indicate the partial amounts extending in perpendicular directions.
- Components indicate how much up or down and how much left or right a vector points.
- Any given vector is equal to the sum of its components by the head-to-tail rule or parallelogram rule.

Example of correct notation and terminology:

$$
\left.\begin{array}{l}
\mathrm{A}_{\mathrm{x}}=-8.66 \mathrm{~m} \\
\mathrm{~A}_{\mathrm{y}}=5.00 \mathrm{~m}
\end{array}\right\} \begin{aligned}
& \text { These are } \\
& \text { "the } \\
& \text { components" } \\
& \text { of the vector. }
\end{aligned}
$$

Vector A points 5.00 m up and 8.66 m to the left.

Unit Vectors

- A "unit vector" is a convenient alternate notation for indicating components and vector directions.
- By definition a unit vector always has a magnitude of exactly 1 and a particularly defined direction.
- Unit vectors for a given coordinate system are always perpendicular to one another.

Unit Vectors

Rectangular Coordinates:
$\hat{i}=1$ in the positive x-direction
$\hat{j}=1$ in the positive y-direction
Polar Coordinates:
$\hat{r}=1$ in the positive radial direction
$\hat{\boldsymbol{\theta}}=1$ in a direction perpendicular to \hat{r} and in a counterclockwise sense

Example of alternate notation:

$$
\mathbf{A}=10.0 \mathrm{~m}, 150.0^{\circ}
$$

$$
\bar{A}=(-8.66 \hat{i}+5.00 \hat{j}) \mathrm{m}
$$

Vector A points 5.00 m up and 8.66 m to the left.

