1. a. Capella, Auriga b. Sirius, Canis Major c. Thuban, Draco
2. a. $22 \mathrm{~h} 57 \mathrm{~m},-29^{\circ} 37^{\prime}$
b. $10 \mathrm{~h} 08 \mathrm{~m}, 11^{\circ} 58^{\prime}$
c. $16 \mathrm{~h} 29 \mathrm{~m},-26^{\circ} 26^{\prime}$
d. $3 \mathrm{~h} 08 \mathrm{~m}, 40^{\circ} 58^{\prime}$
3. a. Orion, Eridanus,

Taurus, Cetus, Pisces, Aquarius, Aquila, Serpens, Ophiuchus, Virgo, Leo, Sextans, Hydra, Canis Minor, Monoceros
b. Quito, Belem, Nairobi
4. a. Vega
b. Fomalhaut
5. a. E to W due to Earth's rotation
b. E to W due to Earth's orbit or revolution
6. a. 15.04°
b. E to W
c. $10: 56 \mathrm{pm}$
7. a. Dec. 23
b. Apr. 28
c. Mar. 9
d. Jul. 20
8. a. Cygnus, Deneb
b. Capricornus
c. Perseus
d. Fomalhaut, Sculptor, Piscis Austrinus
9. a. E to W due to Earth's

rotation

b. W to E due to Earth's orbit or revolution
10. a. graph
b. ecliptic
c. autumnal equinox $=9 / 22$
winter solstice $=12 / 21$
d. sun moves southward and lower in the observer's sky because northern hemisphere tilts away from Sun
15. a. It would be same as celes. equator
b. Perhaps due to varying dist. from Sun, but much less intense
c. Tropics would be undefined
d. Sun would appear every day same as it does now only on the equinoxes
16. a. 72 yrs .
b. Sagittarius
c. Virgo
d. 44°
17. a. E to W
b. W to E
18. a. Jan. 30, 12 noon
b. Jan. 15, 6 pm
c. Jan. 23, 3 am
d. Jan. 8, 9 am
19. a. waxing crescent b. W, near horizon c. 1st quarter, S
20. a. graph
b. orbit of moon is tilted relative to Earth's orbit
c. 5°, which is tilt of Moon' s orbit
d. Essentially yes the path is repeated But it is not exactly the same
21. 33^{\prime}
22. 7.14 days
23. a. April 08, 2024
b. total eclipse? nearly same position in sky and apparent size of Moon vs. Sun (33.7' vs 31.9')
c. at next new moon 5/08 Sun and Moon are not at same coordinates
d. dates of full Moons $3 / 25$ or $4 / 23$
24. a. twice per year d. every sunset and sunrise
b. twice per year
c. every night

e. once in a lifetime

f. once every few years

Chart 1 of 2 for HW Problems 10 and 20

Chart 2 of 2 for HW Problems 10 and 20

Date	Time	RA	Decl.	Az.	Alt.	Dia.
$03 / 24$	3 pm	$00^{\mathrm{h}} 16^{\mathrm{m}}$	$+01^{\circ} 50^{\prime}$	212.4°	51.4°	32.1^{\prime}
$04 / 08$	3 pm	$01^{\mathrm{h}} 11^{\mathrm{m}}$	$+07^{\circ} 36^{\prime}$	218.7°	55.9°	31.9^{\prime}
$04 / 23$	3 pm	$02^{\mathrm{h}} 07^{\mathrm{m}}$	$+12^{\circ} 53^{\prime}$	225.5°	59.9°	31.8^{\prime}
$05 / 08$	3 pm	$03^{\mathrm{h}} 04^{\mathrm{m}}$	$+17^{\circ} 22^{\prime}$	232.1°	63.1°	31.7^{\prime}
$03 / 25$	3 am	$12^{\mathrm{h}} 19^{\mathrm{m}}$	$-01^{\circ} 41^{\prime}$	210.0°	48.2°	29.8^{\prime}
$04 / 08$	3 pm	$01^{\mathrm{h}} 11^{\mathrm{m}}$	$+07^{\circ} 37^{\prime}$	218.8°	55.9°	33.7^{\prime}
$04 / 10$	3 pm	$03^{\mathrm{h}} 04^{\mathrm{m}}$	$+20^{\circ} 06^{\prime}$	161.6°	73.4°	33.1^{\prime}
$04 / 24$	3 am	$14^{\mathrm{h}} 18^{\mathrm{m}}$	$-16^{\circ} 46^{\prime}$	202.4°	34.2°	30.2^{\prime}

23. (a) Determine the date on which a solar eclipse occurs. (b) Based on the information given what type of solar eclipse would an observer in Knoxville witness on that date? (c) A new moon after the one shown in the table occurs on May 8 and has about the same RA and declination as shown for April 10. This will not be an eclipse - explain. (d) A penumbral lunar eclipse occurs on at least one of the dates in the table - which one(s)? Explain

