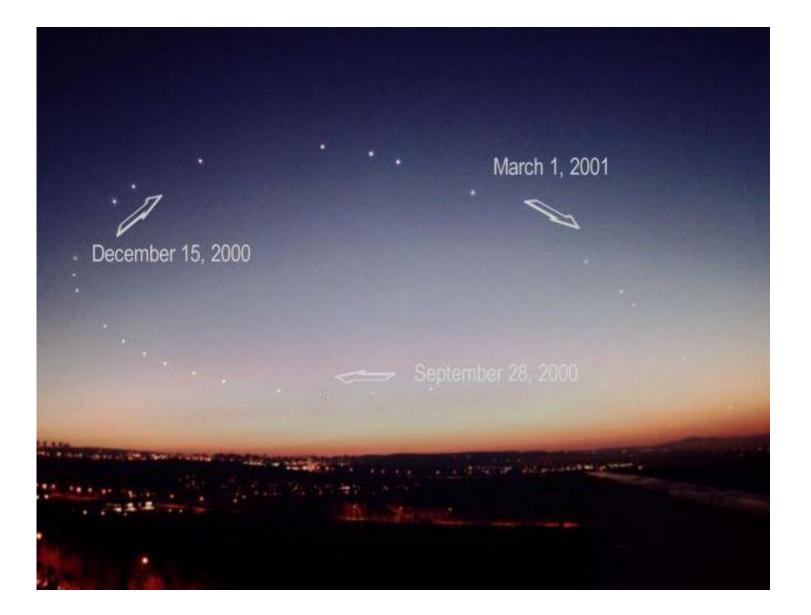
The Wanderers!

Cosmological Models

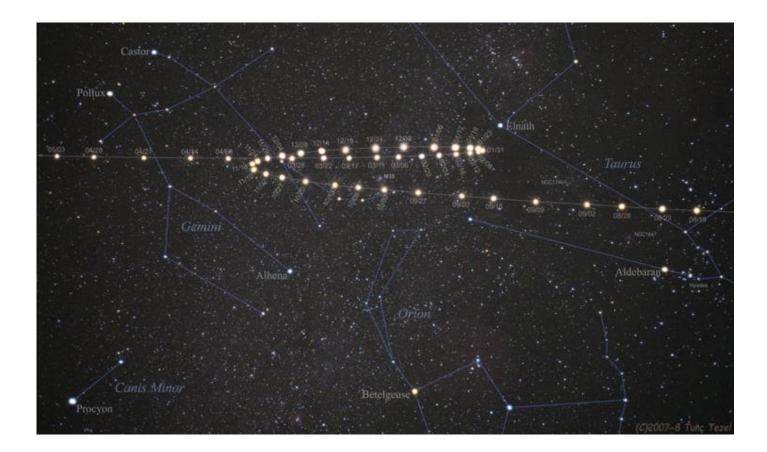
- I. Planetary Motion
- II. Aristotle and Ptolemy
- III. Copernicus
- IV. Galileo
- V. Kepler's Laws
- VI. Newton's Laws
- VII. Einstein


]	The student will be able to:	HW:
1	Describe and illustrate the apparent motion of each of the eight planets as seen from Earth bringing special attention to the similarities and differences.	1 – 5
2	Define, illustrate, and apply the following concepts: direct or prograde motion, retrograde motion, conjunction, opposition, and elongation.	
3	Explain and illustrate aspects of ancient geocentric models of the universe including the concepts of deferents, epicycles, and the works of Ptolemy.	6 – 8
4	Explain and illustrate the heliocentric model of the universe proposed by Copernicus including its seven main points and its own inconsistencies.	9 – 11
5	Explain and illustrate how Galileo was able to provide evidence for the validity of the heliocentric model.	12
6	Desribe Tycho Brahe's contribution to the formation of Kepler's Laws.	13 – 14
7	Define and apply the characteristics of ellipses: focus, semi-major axis, semi-minor axis, and eccentricity.	15 – 16
8	Define, illustrate, and apply the concepts of aphelion and perihelion.	
9	Explain, illustrate, and apply Kepler's three laws of planetary motion and properties of ellipses to solve problems involving orbits.	17 – 21
10	Explain, illustrate, and apply methods for determining the absolute and relative scale of the solar system.	22 – 25
11	Explain, illustrate, and apply Newton's Laws of Motion and Universal Gravitation.	26 - 29
12	Compare and contrast Newton's Laws with Kepler's Laws.	30 – 32

Appearances of the Planets

- 1. The planets are always located near the ecliptic.
- 2. Most of the time planets move west to east, which is called direct (or prograde).
- 3. Occasionally, planets move <u>east to west</u>, which is called <u>retrograde</u>.
- 4. Retrograde paths look like loops or zigzags.
- 5. The rate at which a planet moves decreases during a reversal in direction


fast to slow:	Conj. occurs	Opp. occurs	Max. Elong.	Retrograde occurs during	Synodic Period (days)	Elong. @ max Brightness
Mercury	Y	N	28°	conjunction	116	
Venus	Y	N	47°	conjunction	584	
Mars	Y	Y	180º	opposition	780	
Jupiter	Y	Y	180º	opposition	399	
Saturn	Y	Y	180º	opposition	378	
Uranus	Y	Y	180º	opposition	370	
Neptune	Y	Y	180º	opposition	367	
Pluto	Y	Y	180º	opposition	366	


© Matthew W. Milligan

fast to slow:	Conj. occurs	Opp. occurs	Max. Elong.	Retrograde occurs during	Synodic Period (days)	Elong. @ max Brightness
Mercury	Y	Ν	28°	conjunction	116	20°
Venus	Y	N	47°	conjunction	584	40°
Mars	Y	Y	180º	opposition	780	180º
Jupiter	Y	Y	180º	opposition	399	180º
Saturn	Y	Y	180º	opposition	378	180º
Uranus	Y	Y	180º	opposition	370	180º
Neptune	Y	Y	180º	opposition	367	180º
Pluto	Y	Y	180º	opposition	366	180º

© Matthew W. Milligan

Key Ideas

- Planets exhibit very particular behaviors.
- Based on years of observations, the planets' behaviors were known to ancient societies.
- It was desired to understand these patterns of behavior. Many different people made contributions to our ultimate understanding of what we observe.
- A successful "cosmological model" can explain all of the apparent behaviors of the planets.