Goals:

Learn properties of ellipses and terminology. Apply
Kepler's $1^{\text {st }}$ and $3^{\text {rd }}$ Laws of Planetary Motion.
Create colorful mini-poster of your own planet!

 twice

Knot inside $2^{\text {nd }}$ fold

Hold folded card, mark each end.

Pencil inside loop, draw half of ellipse.

These 2 points are the foci!

Reposition folded card against the two marks, draw $2^{\text {nd }}$ half:

$1^{\text {st }}$ half done:

Finished!

Planet Poster Directions - detailed

1. Name your planet - be creative. Pick a focus and make it the Sun. Make diagram colorful and interesting. Include labels.
2. Use a ruler, measure and record a, b, and c. Use a scale of: $1 \mathrm{~cm}=1 \mathrm{AU}$
3. Pick a random point on the ellipse. Measure, label, and record d_{1} and d_{2}. Confirm the relations: $d_{1}+d_{2}=2 a$ and $b^{2}+c^{2}=a^{2}$. Show your work.
4. Calculate the eccentricity: $e=c / a$ Show your work.
5. Measure the aphelion and perihelion distances.

Confirm the relations: $a h=a(1+e)$ and $p h=a(1-e)$. Show your work.
6. Determine the period in years using Kepler's $3^{\text {rd }}$ Law. Show your work.

Directions - brief:

1. Name planet, label

 diagram, be creative!2. Measure a, b, c.
3. Confirm:
$d_{1}+d_{2}=2 a$
$b^{2}+c^{2}=a^{2}$
4. Calculate the eccentricity:
$e=c / a$
5. Use $1 \mathrm{~cm}=1 \mathrm{AU}$ calculate $p h$ and $a h$ distances.
6. Determine period.

$$
1 \mathrm{CM}=1 \mathrm{AU}
$$

