Measurement \& Calculation

I. SI Units, Prefixes, Orders of Magnitude
II. Rates
III. Skinny Triangles
IV. Circles, Arcs
V. Spherical Coordinates

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	$2-3$
3	Solve problems involving rate, amount, and time.	$4-7$
4	Solve problems involving "skinny triangles."	$8-13$
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	$14-15$
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	$16-21$
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	$22-24$

The light-year is a unit of

A.Speed
B.Distance
C.Time
D.Space-Time

Rates

ratio of change

Rate, Amount, Time

- Rates are very important in science and astronomy is no exception.
- A rate is a numerical value that shows how rapidly something occurs.

Speed

Speed is a rate based on the distance traveled per unit time.

where:

$$
\begin{aligned}
v & =\text { speed } \\
d & =\text { distance } \\
t & =\text { time }
\end{aligned}
$$

The Apollo spacecraft traveled 239000 miles to the Moon in about 76 hours. Find the average speed.

In order to escape Earth' s gravity, a spacecraft must attain a speed of about 25000 mph . At this speed how far can a spacecraft travel in 76 hours?

In order to reach Mars, a spacecraft must travel at least 47 million miles.
 Determine the time to do this at a speed of 25000 mph .

Which is bigger - the Sun or the Moon?

Which appears bigger - Sun or Moon?

The Sun is much bigger than the Moon!

The Sun and Moon appear to be the same size!

© Matthew W. Milligan

But not always exactly the same...

ⓒ Matthew W. Milligan

Measurement \& Calculation

I. SI Units, Prefixes, Orders of Magnitude
II. Rates
III. Skinny Triangles
IV. Circles, Arcs
V. Spherical Coordinates

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	$2-3$
3	Solve problems involving rate, amount, and time.	$4-7$
4	Solve problems involving "skinny triangles."	$8-13$
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	$14-15$
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	$16-21$
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	$22-24$

Angles

a KEY concept in Astronomy

Angular Size

- Astronomers often describe the size of objects by using angles.
- The angular size is the angle formed by rays drawn from the observer to the object:

Angle Units - in Words

1 degree $=$ central angle that delimits $1 / 360$ the circumference of a circle

1 arc minute $=1 / 60$ of one degree

1 arc second $=1 / 60$ of one arc minute
central angle that delimits
1 radian $=$ an arc equal in length to the radius of the circle

Angle Units - Conversions

$$
\begin{aligned}
1^{\prime} & =1 / 60^{\circ} \text { or } 60^{\prime}=1^{\circ} \\
1^{\prime \prime} & =1 / 60^{\prime} \text { or } 60^{\prime \prime}=1^{\prime} \\
2 \pi \mathrm{rad} & =360^{\circ} \text { or } 1 \mathrm{rad} \approx 57.3^{\circ}
\end{aligned}
$$

Convert to Decimal Degrees

$$
\begin{array}{ll}
\text { 1. } & 32^{\prime} \\
\text { 2. } & 6^{\prime \prime} \\
\text { 3. } & 2^{\circ} 40^{\prime} \\
\text { 4. } 30^{\prime} 15^{\prime \prime} \\
\text { 5. } & 5^{\circ} 10^{\prime} 18^{\prime \prime}
\end{array}
$$

Convert to Decimal Degrees

1. 32^{\prime}
0.53°
2. $6^{\prime \prime}$
0.0017°
3. $2^{\circ} 40^{\prime}$
2.67°
4. $30^{\prime} 15^{\prime \prime}$
5. $5^{\circ} 10^{\prime} 18^{\prime \prime}$
5.1717°

Convert to Decimal Degrees

$$
\begin{aligned}
& \text { 6. } 15^{\prime} \\
& \text { 7. } 15^{\prime \prime} \\
& \text { 8. } 10^{\circ} 25^{\prime} \\
& \text { 9. } 25^{\circ} 50^{\prime} 08^{\prime \prime}
\end{aligned}
$$

Convert to Decimal Degrees

6. 15^{\prime}
7. $15^{\prime \prime}$
8. $10^{\circ} 25^{\prime}$
9. $25^{\circ} 50^{\prime} 08^{\prime \prime}$
0.25°
0.0042°
10.42°
25.8356°

Convert to Degrees, Minutes, Seconds

$$
\begin{array}{ll}
\text { 1. } & 0.75^{\circ} \\
\text { 2. } & 0.0015^{\circ} \\
\text { 3. } & 0.5050^{\circ} \\
\text { 4. } 4.8975^{\circ}
\end{array}
$$

Convert to Degrees, Minutes, Seconds

$$
\begin{array}{ll}
\text { 1. } 0.75^{\circ} & 45^{\prime} \\
\text { 2. } 0.0015^{\circ} & 5.4^{\prime \prime} \\
\text { 3. } 0.5050^{\circ} & 30^{\prime} 18^{\prime \prime} \\
\text { 4. } 4.8975^{\circ} & 4^{\circ} 53^{\prime} 51^{\prime \prime}
\end{array}
$$

Convert to Degrees, Minutes, Seconds

5. 0.30°
6. 0.0075°
7. 0.251°
8. 5.2134°

Convert to Degrees, Minutes, Seconds

$$
\begin{array}{ll}
\text { 5. } 0.30^{\circ} & 18^{\prime} \\
\text { 6. } 0.0075^{\circ} & 27^{\prime \prime} \\
\text { 7. } 0.251^{\circ} & 15^{\prime} 04^{\prime \prime} \\
\text { 8. } 5.2134^{\circ} & 5^{\circ} 12^{\prime} 48^{\prime \prime}
\end{array}
$$

Hold your hand at arm's length and these are approximate angular sizes - handy for judging things in the sky!

What Determines Angular Size?

- The greater the actual size of the object and/or the closer it is, the greater the apparent angular size.
- Angular size is proportional to actual size and inversely proportional to distance.

Skinny Triangles

Skinny Triangles

This works only if angle is small - i.e. triangle is skinny!
1.A 50 ft telephone pole viewed from a distance of 400 ft has what angular size?
2. What was the angular diameter of Earth (diameter $=1.3 \times 10^{7} \mathrm{~m}$) as it appeared to the Apollo astronauts on the Moon at a distance of $3.8 \times 10^{8} \mathrm{~m}$?
3.A certain tree has an angular height of 3.5° when viewed from a distance of 570 m . Find the tree's height.
4.Suppose a ship at sea just "fills the view" through binoculars with a 5.0° field of view. If the ship is 0.65 miles away, what is its length.
5.A football field's goal posts have an angular separation of 2.6° as seen by a pilot in an airplane. How far away is the pilot from the field?
6.On a particular date Mars has an angular diameter of 7.0 arc seconds. If the diameter of Mars is 6800 km, how far away is it on that date?

Note: the "skinny triangle" formula is actually an approximation based on arc length. For "skinny" triangles the linear amount h is essentially the same as the arc length a.

