Measurement \& Calculation

I. SI Units, Prefixes, Orders of Magnitude
II. Rates
III. Skinny Triangles
IV. Circles, Arcs
V. Spherical Coordinates

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	$2-3$
3	Solve problems involving rate, amount, and time.	$4-7$
4	Solve problems involving "skinny triangles."	$8-13$
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	$14-15$
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	$16-21$
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	$22-24$

SI Units

The Power of Ten!

SI Units

- The SI or International System of units provides the basis for all scientific measurements.
- There are seven base units; all other units are "built" from these seven.
- Three of the most basic units, the meter, the second, and the kilogram, are based upon the planet Earth.

the meter

- 1793: 1 meter = one ten millionth the distance from the north pole to the equator, passing through Lyons.
- 1889: 1 meter = the length of a certain metal bar kept near Paris.
- 1960: 1 meter = 1650763.73 wavelengths of orange-red light of krypton-86.
- 1983: 1 meter = distance traveled by light in a vacuum in $1 / 299792458^{\text {th }}$ of a second.

the meter - fun trivia

- Based on the original definition the circumference of the Earth would be exactly 40000000 m , but the circumference based on the current definition is 40007863 m .
- This means that the prototype meter bar created in 1889 was "too short" by 0.0002 m or 0.2 mm .

the second

- originally: 1 second $=1 / 86400^{\text {th }}$ of the mean solar day.
- 1967: 1 second = 9192631770 vibrations of cesium-133 atom placed under certain conditions

the kilogram

- originally: 1 kilogram = mass of one liter (1000 cm^{3}) of water
- 1900: 1 kilogram = mass of a certain chunk of metal kept near Paris.
- 2019: 1 kilogram is the mass such that Planck's constant is set at exactly: $h=6.62607015 \times 10^{-34} \mathrm{Js}$
(or 1 kilogram is a rest mass with energy equal to a collection of photons whose frequencies sum to $1.356392489652 \times 10^{50} \mathrm{~Hz}$)

the original kilogram

the kilogram - fun trivia

- Comparisons of the international prototype kilogram to national prototypes had shown drifts of up to $2 \times 10^{-8} \mathrm{~kg}$ per year! (Say it isn't so!!)
- A "watt balance" (or "Kibble balance") allows a mass to be precisely related to Planck's
 constant and vice versa. This is one way to implement the new definition.

Previous (1983-2018)

Old SI

Current (implemented May 2019!)
New SI

Metric Prefixes

factor	name	symbol	factor	name	symbol
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	x
10^{1}	deka	da	10^{-24}	yocto	y

What You Need to Know!

- Memorize values of the most commonly used prefixes:
nano-, micro-, milli-, centi-, kilo-, mega-, and giga-
- Memorize the value of a liter:

$$
1 \mathrm{~L}=1000 \mathrm{~cm}^{3} \text { or } 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
$$

- Be able to do any unit conversion involving any of the above!

2.5 dozen eggs = ? eggs

42 days $=$? weeks

12 eggs
 1 dozeneggs
 $=30$ eggs

1 week
 42 days $\times \frac{1 \text { week }}{7 \text { dats }}=6$ weeks 7 days

2.5 kilometers x

$1 \times 10^{3} \mathrm{~m}$

$=2500 \mathrm{~m}$

$=2500 \mathrm{~m}$

$42 \mathrm{minh} . \times \frac{1 \mathrm{hr} .}{60 \mathrm{minh} .}=0.70 \mathrm{~h}$

Factor Label Method

- A conversion factor is an equivalence of two values.
- Multiply or divide by the factor(s) and label the units.
- Check that unwanted units cancel and desired units remain.

Minimum wage of $\$ 7.25$ per hour is equal to how many cents per second?

7.25 dollars/h = ? cents/s

Minimum wage of $\$ 7.25$ per hour is equal to how many cents per second?
7.25 dottar 100 cents 1 hf 1 min

1 hour 1 doHtar 60 mik 60s
7.25 meter 100 cm 1 hf 1 min

1 hout 1 meter $60 \mathrm{~min} \quad \frac{60(s)}{}=0.20 \mathrm{~cm} / \mathrm{s}$
Converting a speed of 7.25 meters per hour into centimeters per second is very similar!

Units Saved* My Life!

- What is the maximum safe radon exposure? CRC Handbook: $3 \times 10^{-8} \mu \mathrm{Ci} / \mathrm{cm}^{3}$ Random dude in cafeteria: $20 \mathrm{pCi} / \mathrm{L}$
- Convert both values to $\mathrm{Ci} / \mathrm{m}^{3}$ and compare!

[^0]
Notice that because 1 meter $=100 \mathrm{~cm}$ it follows

 that 1 cubic meter $=100^{3}$ cubic centimeters:$\frac{3 \times 10^{-8} \mu \mathrm{Ci}}{\mathrm{em}^{3}} \cdot \frac{1 \mathrm{Ci}}{10^{6} \mu \mathrm{Ct}} \cdot \frac{100^{3} \mathrm{~cm}^{3}}{1^{3} \mathrm{~m}^{3}}=3 \times 10^{-8} \mu \mathrm{Ci}$
$\frac{20 \mathrm{pEt}}{\not L} \cdot \frac{10^{-12} \mathrm{Ci}}{1 \mathrm{pGi}} \cdot \frac{1 \not \subset}{1000 \mathrm{sm}^{3}} \cdot \frac{100^{3} \mathrm{cms}^{3}}{1^{3} \mathrm{~m}^{3}}=2 \times 10^{-8} \mu \mathrm{Ci}$
Notice that the liter is defined as 1000 cubic centimeters.

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	$2-3$
3	Solve problems involving rate, amount, and time.	$4-7$
4	Solve problems involving "skinny triangles."	$8-13$
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	$14-15$
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	$16-21$
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	$22-24$

Order of Magnitude

An order of magnitude is an approximate factor of ten.

How fast is light?

- The speed of light is $299792458 \mathrm{~m} / \mathrm{s}$. The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$. The speed of a car is about $25 \mathrm{~m} / \mathrm{s}$. How many orders of magnitude greater is the speed of light?
$299792458 / 343=874030 \approx 10^{6}-$ light is 6 orders of magnitude faster than sound $299792458 / 25=1.199 \times 10^{8} \approx 10^{8}-$ light is 8 orders of magnitude faster than a car

How far is it to Mars?

- The distance from Earth to Mars using a Hohmann transfer is 300 Gm . The distance from Earth to Moon 380 Mm . The distance around the Earth is 40000 km . How many orders of magnitude greater is the trip to Mars?
$G=10^{9}, M=10^{6}, 9-6=3$, so Mars is 3 orders of magnitude farther than the Moon
$G=10^{9}, k=10^{3}, 9-3=6$, so Mars is 6 orders of magnitude farther than circumnavigating the Earth

How far is it to Alpha Centauri?

- The distance to Alpha Centauri is about 4 light-years. The distance to the Sun is about 8 light-minutes. How many orders of magnitude greater is Alpha Centauri?

4 years $=2103780$ minutes, $2103780 / 8=2.63 \times 10^{5} \approx 10^{5}$
The nearest star similar to the Sun is 5 orders of magnitude farther away than the Sun.

[^0]: *(sort of)

