the Visible Sky

I. Stars and Celestial Sphere Constellations \& Coordinates
II. Sun

Time, Seasons, Precession
III. Moon

Phase, Orbit, etc.
IV. Eclipses

Solar \& Lunar

The student will be able to:		HW:
1	Explain and utilize constellations and asterisms as means of mapping and organizing the stars.	1-4
2	Explain and utilize the concept of the celestial sphere as a means of understanding the appearance of the universe as seen from Earth.	
3	Explain the significance of the pole star, Polaris, and its connection with the apparent motion of the celestial sphere.	
4	Explain, define, and utilize the celestial equatorial coordinate system of right ascension and declination, celestial equator and celestial poles.	
5	Describe changes in position and appearance of the stars through time and explain in terms of the actual motion and position of the Earth.	5
6	Define, apply, and relate to astronomical events or cycles the following time concepts: sidereal and solar day, sidereal and tropical year, mean solar time, standard time, daylight savings time, and universal time.	6
7	Use a planisphere to locate celestial objects for a particular date and time and/or determine the date and time of certain celestial events.	7-8
8	Describe changes in position and appearance of the Sun through time and explain in terms of the actual motion and position of the Earth.	9
9	State the constellations of the zodiac in order and explain the relation between the zodiac and the Sun.	10-14
10	Explain, define, and utilize the concept of the ecliptic and the ecliptic plane.	
11	Illustrate and describe the connection between the seasons and the motion and orientation of the Earth in its orbit.	15
12	Explain the cause and effect of Earth's precession and state and apply the period of this cycle to solve problems.	16
13	Describe changes in the appearance of the Moon over the course of one day and night, from one night to the next, from one week to the next, from one month to the next, and from year to year.	17-20
14	Explain the apparent motion and changing appearance of the Moon in terms of the actual motions of the Earth and Moon relative to the Sun.	
15	Explain and illustrate how the motion and position of the Moon relative to the Earth and the Sun result in the phases: new Moon, waxing crescent, first quarter, waxing gibbous, full Moon, waning gibbous, third quarter, and waning crescent.	
16	Define, apply, and relate to astronomical events or cycles the following concepts: sidereal month, synodic month, lunar sidereal and solar days.	21-22
17	Explain and illustrate how the motions and positions of the Earth, the Sun, and the Moon result in lunar and solar eclipses - partial, total, and annular.	23
18	Explain and illustrate the concepts of umbra and penumbra in relation to eclipses.	24

The Celestial Sphere

Mapping the Stars

Mapping the Sky

- The celestial sphere is an imaginary sphere centered on the observer or any point of possible observation
- It is as if all of the stars are "painted" on an invisible globe and the observer is at the center of that globe.
- Two methods are used to map stars on this globe: constellations and celestial coordinates.

Constellations

- It is human nature to recognize patterns. Originally constellations were simply patterns of stars, usually attributed to mythological beings.
- The pattern may or may not look like what it is supposed to be!
- There is no "official way" to see the patterns - you can imagine the figure or "connect the dots" however you please ...

Constellations

- Eventually, boundaries were developed for constellations so that every star could be clearly designated as being "in" a particular constellation.
- In 1875 Gould defined boundary lines for about half and the rest were done by Eugene Delporte.
- In 1930 the International Astronomical Union defined official boundaries for 88 constellations. This is how constellations are defined scientifically currently.

Constellations

- The 88 constellations completely "tile" the celestial globe - i.e. they fit together like jigsaw pieces.
- Serpens Cauda and Serpens Caput count as 1 out of the total 88.
- Stars within a constellation are designated with a Greek letter, usually in order of apparent brightness. Example: beta Leonis is the second brightest star in Leo.

Asterisms

- These days a constellation is not a pattern of stars, but rather a well defined and bounded region in the sky.
- An "asterism" is an informal pattern of stars recognized by many people. Usually an asterism is named for what it looks like.
- An asterism is not "officially recognized" by astronomers. But asterisms are useful for learning your way around the sky!

the Big Dipper

The Evening Sky Map

4 Last Quarter Moon at 18:19 UT.
6 Moon near the Pletades at 3 h UT (morning sky).
6 Moon near Aldebaran (morning sky) at 19h UT.
9 Mercury at inferior conjunction with the Sun at 2 h UT. Mercury passes into the morning sky. Not visible.
9 Moon near Castor (morning sky) at 15h UT.
9 Moon near Pollux (morning sky) at 19h UT.
10 Moon at perigee (closest to Earth) at 18:10 UT ($358,078 \mathrm{~km}$; angular size 33.4).
11 Partal Eclipse of the Sun at 9:46 UT (greatest). Visible from northern Europe and NE Asia. Begins at 8:02 and ends at 11:31 UT.
11 New Moon at 9:58 UT. Start of lunation 1183.
12 Persetd meteor shower peaks at 20 h UT. Peak lasts about 12 hours. Active from July 17 to August 24 . 玉 3 Produces swift, bright meteors (50 to 100 per hour) many with persistent trains. Best viewing is after midnight. Favorable conditions in 2018.
12 Moon near Regulus (evening sky) at 4h UT.
14 Moon near Venus (evening sky) at 18 CH U. Mag. -4.3.
15 Moon near Splca (evening sky) at 22h UT.
17 Moon near Jupitter (evening sky) at 13h UT. Mag. - 2.0 .
17 Venus at greatest elongation east (46° from Sun, evening sky) at 17h UT. Mag. -4.3.
18 First Quarter Moon at 7:49 UT.
19 Moon near Antares (evening sky) at 13h UT.
21 Moon near Saturn (evening sky) at 10h UT. Mag. 0.3.
23 Moon at apogee (farthest from Earth) at 11h UT (distance $405,746 \mathrm{~km}$; angular size 29.4').
23 Moon near Mars (evening sky) at 16h UT. Mag. -2.3.
26 Full Moon at 11:57 UT.
26 Mercury at greatest elongation west (18° from Sun, morning sky) at 20h UT. Mag. -0.1.
More sky events and tinks at http://Skymaps.com/skycalendar/ All times in Universal Time (UT). (USA Eastern Daylight Time $=$ UT -4 hours.)

Practice

1. Notice on Sky Maps that some patterns are labeled with all capital letters and others are not - what is the difference?
2. Can you find the "Three Leaps of the Gazelle"?
3. The "Teapot" is a part of which constellation?
4. The stars Deneb, Vega, and Altair form what asterism and are found in what constellations?
5. What constellation is found between Serpens (Cauda) and Serpens (Caput)?
6. What planet is currently in Libra?

The Evening Sky Map
Sky Calendar - January 2018
http://twitter.com/skymaps
Mercury at greatest elongation west (23° from Sun, morning sky) at 20h UT. Mag. -0.3 .
1 Moon at perigee (closest to Earth) at 21:54 UT (356,565 km; angular size 33.5'). Closest of 2018.
2 Full Moon at 2:24 UT.
3 Earth at Perihelion (closest to Sun) at 6h UT. The Sun-Earth distance is 0.983284 a.u. or 147.1 million kilometers.
3 Moon near Beehive cluster M44 (morning sky) at 20h UT
3 Quadrantid Meteor Shower peaks at 22h UT. Active between December 28 and January 12. Produces up to 120 meteors per hour. Radiant is in northern Boötes.
5 Moon near Regulus (morning sky) at 8h UT. Occultation visible from Alaska, northern Canada, Greenland and Iceland.
8 Last Quarter Moon at 22:25 UT.
9 Venus at superior conjunction with the Sun at 6h UT. Passes into the evening sky (not visible).
11 Moon near Jupiter and Mars (60° from Sun, morning sky) at 10 h UT. Mags. -1.9 and 1.4 .
13 Mercury $0.6^{\circ} \mathrm{S}$ of Saturn (20° from Sun, morning sky) at 8h UT. Mags -0.3 and 0.5 .
15 Moon at apogee (farthest from Earth) at 2 h UT (distance $406,464 \mathrm{~km}$; angular size 29.4).
17 New Moon at 2:17 UT. Start of lunation 1176.
24 First Quarter Moon at 22:20 UT.
27 Moon near Aldebaran (evening sky) at 9h UT. Occultation visible from NW Canada, Alaska, NE Asia.
30 Moon at perigee (closest to Earth) at 10h UT ($358,994 \mathrm{~km}$; angular size 33.3^{\prime}).
31 Moon near Beehive cluster M44 (midnight sky) at 7h UT.
31 Total Eclipse of the Moon begins at 12:52 UT and ends at 14:08 UT. Mid-eclipse at 13:30 UT. Partial phases begin at 11:48 UT and end at 15:11 UT. The Moon will appear red-orange in color during totality (the color of Earth's sunsets). Visible from west North America, the Pacific, Australia, New Zealand, Asia, Russia and India.
31 Full Moon at 13:27 UT.
More sky events and links at http://Skymaps.com/skycalendar/
All times in Universal Time (UT). (USA Eastern Standard Time = UT - 5 hours.)

Practice

1. Notice on Sky Maps that some patterns are labeled with all capital letters and others are not - what is the difference?
2. Can you find "Three Leaps of the Gazelle"?
3. The "Circlet" is a part of which constellation?
4. The stars Sirius, Procyon, Pollux, Capella, Aldebaran, and Rigel form an asterism. Can you guess its name? Hint: connect the dots!
5. What constellation is between Gemini and Lynx? The variable star Mira is found in what constellation?

Celestial Coordinates

- The precise position of any object in the sky can be specified by celestial or "equatorial" coordinates of declination and right ascension.
- These spherical coordinates are very similar to latitude and longitude or altitude and azimuth.

This time-lapse photograph shows the apparent rotation of stars that occurs in about 45 minutes. The center of this apparent rotation is reminiscent of the north pole on a globe. The star nearest the center is Polaris - the North Star!

Celestial Coordinates

- The Celestial North Pole and Celestial South Pole are the points at which the Earth' s axis of rotation intersects the celestial sphere. The Earth's rotation is what causes the apparent rotation of the stars. Polaris, the North Star, just happens to be located very nearly along the Earth's axis of rotation and therefore is very near the Celestial North Pole.
- The Celestial Equator divides the celestial sphere into two equal hemispheres and lies in the same plane as the Earth' s equator.

Celestial North Pole

Celestial Equator

Celestial South Pole

Celestial North Pole

Celestial Equator

Celestial South Pole

Celestial Equator

Celestial Coordinates

- Declination is the angular distance north or south of the celestial equator. It has a range of values: $-90^{\circ} \leq \delta \leq+90^{\circ}$
- Declination is "like" latitude or altitude.
- Right Ascension is the angular distance East of the Vernal Equinox. This angle is traditionally measured in hours minutes and seconds, where $24^{\mathrm{h}}=360^{\circ}$. It has a range of values: $0^{\mathrm{h}} \leq R A<24^{\mathrm{h}}$.
- Right Ascension is "like" longitude or azimuth.

Example coordinates: Sirius (the brightest star) has declination $-16^{\circ} 43^{\prime}$ and right ascension $6^{h} 45^{m}$.

About Right Ascension Angles

- One minute of right ascension is $1 / 60^{\text {th }}$ of one hour of right ascension and is not equal to one arc minute!
- One second of right ascension is $1 / 60^{\text {th }}$ of one minute of right ascension and is not equal to one arc second!
- $1^{\mathrm{h}}=15^{0}$
- $1^{\mathrm{m}}=0.25^{\circ}=15^{\prime}$
- $1^{s}=0.25^{\prime}=15^{\prime \prime}$

Practice - Use a star chart to determine the missing information:

Name	Declination	Right Ascension	Constellation
Sirius	$-16^{\circ} 43^{\prime}$	$6^{\mathrm{h}} 45^{\mathrm{m}}$	Canis Major
	$38^{\circ} 47^{\prime}$	$18^{\mathrm{h}} 37^{\mathrm{m}}$	
	$19^{\circ} 11^{\prime}$	$14^{\mathrm{h}} 15^{\mathrm{m}}$	
	$-52^{\circ} 42^{\prime}$	$6^{\mathrm{h}} 24^{\mathrm{m}}$	
	$-60^{\circ} 50^{\prime}$	$14^{\mathrm{h}} 40^{\mathrm{m}}$	
Betelgeuse			Orion
Capella			Auriga
Antares			Scorpius
Deneb			Cygnus
Achernar			Eridanus

Practice - Use a star chart to determine the missing information:

Name	Declination	Right Ascension	Constellation
Sirius	$-16^{\circ} 43^{\prime}$	$6^{\mathrm{h}} 45^{\mathrm{m}}$	Canis Major
Vega	$38^{\circ} 47^{\prime}$	$18^{\mathrm{h}} 37^{\mathrm{m}}$	Lyra
Arcuturus	$19^{\circ} 11^{\prime}$	$14^{\mathrm{h}} 15^{\mathrm{m}}$	Boötes
Canopus	$-52^{\circ} 42^{\prime}$	$6^{\mathrm{h}} 24^{\mathrm{m}}$	Carina
α-Centauri	$-60^{\circ} 50^{\prime}$	$14^{\mathrm{h}} 40^{\mathrm{m}}$	Centaurus
Betelgeuse	$7^{\circ} 25^{\prime}$	$5^{\mathrm{h}} 55^{\mathrm{m}}$	Orion
Capella	$46^{\circ} 00^{\prime}$	$5^{\mathrm{h}} 17^{\mathrm{m}}$	Auriga
Antares	$-26^{\circ} 28^{\prime}$	$16^{\mathrm{h}} 31^{\mathrm{m}}$	Scorpius
Deneb	$45^{\circ} 21^{\prime}$	$20^{\mathrm{h}} 42^{\mathrm{m}}$	Cygnus
Achernar	$-57^{\circ} 14^{\prime}$	$1^{\mathrm{h}} 38^{\mathrm{m}}$	Eridanus

What part of the Celestial Sphere can you see?

- At any one point in time an observer on Earth can only see half of the celestial sphere.
- Which half depends upon:
latitude,
time and date,
and, to a lesser extent, longitude.
latitude 0°
midnight Jan. 14

latitude $60^{\circ} \mathrm{N}$

midnight Jan. 14

These pages show different latitudes.

latitude $90^{\circ} \mathrm{N}$

midnight Jan. 14

These pages show "fisheye" views of the sky as seen by observers at different latitudes...

An observer at the North Pole would see the Celestial North Pole and Polaris at his zenith and the Celestial Equator along his horizon!

latitude 0°

midnight Jan. 14

These pages show "fisheye" views of the sky as seen by observers at different latitudes...

latitude $30^{\circ} \mathrm{S}$

midnight Jan. 14

 different latitudes.

latitude $90^{\circ} \mathrm{S}$
midnight Jan. 14

celestial north pole

Earth

celestial equator

Effect of Latitude

- The declination of an observer's zenith is equal to the observer's latitude.
- If in the northern hemisphere, an observer can never see south of a declination equal to latitude minus 90 degrees.
- The altitude of the celestial north pole is equal to the observer' s latitude.
- Stars within "latitude degrees" of the celestial north pole never set below the observer' s horizon; these are called "circumpolar stars".

This picture was taken from a location with latitude $\approx 32^{\circ}$ and therefore the Celestial North Pole has altitude 32°. Stars within 32° of the pole are in the circumpolar region and never go below the horizon at this location.

Polaris

Latitude $=90^{\circ} \mathrm{N}$

Capella

Betelgeuse

Dude on North Pole always sees: Polaris straight overhead, Capella about halfway up the sky, and Betelgeuse just above the horizon. He has no chance to ever see Canopus.

Canopus

Polaris

Latitude $=36^{\circ} \mathrm{N}$

Capella

Gal in Knoxville always sees Polaris at altitude 36° above north horizon. Capella and Betelgeuse climb high in the sky at times.
She might glimpse Canopus just
above the horizon if the timing is right.
Betelgeuse

In Knoxville...
 (or any location with latitude $36{ }^{\circ} \mathrm{N}$)

In Knoxville... stars within 36° of the N. Pole are always above the horizon (circumpolar region).

... stars within 36 of the S. Pole are always below the horizon and can never be seen.

In Knoxville (or any location with latitude $36 \div 0$

In Knoxville (or any location with latitude $36 \div$ N)...

