The Planisphere

A Cardboard Computer!

the Visible Sky

I. Stars and Celestial Sphere Constellations \& Coordinates
II. Sun

Time, Seasons, Precession
III. Moon

Phase, Orbit, etc.
IV. Eclipses

Solar \& Lunar

The student will be able to:		HW:
1	Explain and utilize constellations and asterisms as means of mapping and organizing the stars.	1-4
2	Explain and utilize the concept of the celestial sphere as a means of understanding the appearance of the universe as seen from Earth.	
3	Explain the significance of the pole star, Polaris, and its connection with the apparent motion of the celestial sphere.	
4	Explain, define, and utilize the celestial equatorial coordinate system of right ascension and declination, celestial equator and celestial poles.	
5	Describe changes in position and appearance of the stars through time and explain in terms of the actual motion and position of the Earth.	5
6	Define, apply, and relate to astronomical events or cycles the following time concepts: sidereal and solar day, sidereal and tropical year, mean solar time, standard time, daylight savings time, and universal time.	6
7	Use a planisphere to locate celestial objects for a particular date and time and/or determine the date and time of certain celestial events.	7-8
8	Describe changes in position and appearance of the Sun through time and explain in terms of the actual motion and position of the Earth.	9
9	State the constellations of the zodiac in order and explain the relation between the zodiac and the Sun.	10-14
10	Explain, define, and utilize the concept of the ecliptic and the ecliptic plane.	
11	Illustrate and describe the connection between the seasons and the motion and orientation of the Earth in its orbit.	15
12	Explain the cause and effect of Earth's precession and state and apply the period of this cycle to solve problems.	16
13	Describe changes in the appearance of the Moon over the course of one day and night, from one night to the next, from one week to the next, from one month to the next, and from year to year.	17-20
14	Explain the apparent motion and changing appearance of the Moon in terms of the actual motions of the Earth and Moon relative to the Sun.	
15	Explain and illustrate how the motion and position of the Moon relative to the Earth and the Sun result in the phases: new Moon, waxing crescent, first quarter, waxing gibbous, full Moon, waning gibbous, third quarter, and waning crescent.	
16	Define, apply, and relate to astronomical events or cycles the following concepts: sidereal month, synodic month, lunar sidereal and solar days.	21-22
17	Explain and illustrate how the motions and positions of the Earth, the Sun, and the Moon result in lunar and solar eclipses - partial, total, and annular.	23
18	Explain and illustrate the concepts of umbra and penumbra in relation to eclipses.	24

Planisphere

- A planisphere is a "star wheel" that displays the stars visible to an observer at a certain latitude at a particular time and date.
- To use the planisphere, simply turn the wheel until the time of day is aligned with the date in question. Once this is done the stars that are visible in the window are visible in your sky! (with some exceptions)

Technically correct only for latitude $40^{\circ} \mathrm{N}$ but fairly accurate for latitudes within 10° of this.

This is set for January 15 at 9 pm and therefore shows the stars visible to an observer at Edmund Scientific
LOCATOR

wifh North tazars the
forth Pole Chari and Horth Pole Charf and
aotual slar positions adtuid siar
siff mateh.

41s65. 19 ? F Frinutd Snantific Co.

Chat by Gaerge Lovi
NORTH
 (3) that time of the night.
of the four points on the horizon. East and West are at intersection with the celestial equator.

The edge of the oval window represents the horizon of the observer. Stars outside the oval are below the horizon and cannot be seen.

Practice using the planisphere...

1. What constellations have stars that are found in the circumpolar region? These stars do not go below the horizon at any date or time as the wheel spins.
2. For 10 p.m. July 10 determine the constellation nearest: (a) zenith, (b) south horizon, (c) west horizon.
3. Repeat for midnight July 10.
4. At what times does the star Rigel in Orion rise and set on Oct. 31?
5. On what date does Arcturus in Bootes cross the observer's meridian at midnight?
6. What is the sidereal time of the previous event? On what date does sidereal time most closely match mean solar time?
 ґəләиәчм - Snıпэл

Super Planisphere!
41555. 19?? Erinuta Sntartific Co. SD Poarco av, Tuhasanion Nr 1ar
 Chatt by Gacrge Lovi

NORTH

The following pages show how to enhance the planisphere by drawing right ascension and declination lines and placing the Sun on the wheel.

These additional elements make it possible to determine many things with the planisphere - making it a

Look closely at the actual disk that turns inside the planisphere. The intersection of the celestial equator and the ecliptic defines the

Adding the Sun to the Planisphere

Use hole punchers to punch out a small sticky dot from a post-it note. Then place the Sun in an appropriate position on the star wheel. The Sun is always on the ecliptic - use the dates on the edge of the wheel to determine where.

Cool trick: Predict the times of sunrise and sunset!

5 a.m.

Meridian
Example:
When is sunrise on May $30 ?$
Place the "sticky-dot Sun" on the ecliptic at the correct location for this date. Then rotate the wheel until the Sun is centered on the east side of the horizon...

Cool trick: Predict the times of sunrise and sunset!

5 a.m.

Not only can you find the time of sunrise but also you can tell that the Sun will rise north of east on the horizon!

Meridian
Example:
When is sunrise on May $30 ?$
Place the "sticky-dot Sun" on the ecliptic at the correct location for this date. Then rotate the wheel until the Sun is centered on the east side of the horizon...
...notice the date May 30 lines up with 5 a.m. when the wheel is rotated to put the Sun on the east horizon. Sunrise is approx. Noon 5 a.m. Mean Solar Time on May 30!

Example:

When is sunset on May 30? Leave the sticky dot Sun at the same spot on the ecliptic. 7 p.m.

Not only can you find the time of sunset but also you can tell that the Sun will rise north of west on the horizon!

Rotate the wheel until the Sun is centered on the west side of the horizon...
...notice the date May 30 lines up with 7 p.m. when the wheel is rotated to put the Sun on the west horizon. Sunset is approx. Noon

7 p.m. Mean Solar Time on May 30!

Time on the Planisphere vs.
Time on the Clock

In Knoxville: Eastern Standard Time (EST) is found by adding 36 minutes. The Sun appears on the meridian here at 12:36 pm EST (on average).

Time on the Planisphere vs.
Time on the Clock

Directions:
Tum disk until taie and
Tums disk untit taif and
time are sht. Hoh oyetheas
wifh North tazars the
Horth Pole Chari and
Horth Pole Chari and
abtuil star positiona
abtuil ster
afll nateli.
41555. 19 ? E Ethuthd Sntantific Co.
 Aliturtanion Thesouper ard Alensanoen

Planet
 LOCATOR

MERIDIAN
Mean Solate Time

In Knoxville: Eastern
Daylight Time (EDT) is found by adding 1 hour 36 minutes.
The Sun appears on the meridian here at 1:36 pm EDT (on average).

Further adjustment is needed for daylight savings time! Most clocks are adjusted forward one hour from mid-March through early November.

1:36 pm

String o mole
To Farm Meridian List,
Steteb Siring Betwess Above
Two Holes And Give In Plaze

Time on the Planisphere vs.
Time on the Clock
41555. 19?? Ertnutid Snternticic Co.

12:36 am, EST 1:36 am, EDT

Summarizing: an observer in Knoxville would want to use times such as shown here. Observers at other longitudes could make adjustments in the same way.

Practice with Enhanced Planisphere

1. Find the times of sunrise and sunset and the constellation in which the Sun is found:
(a) Sept. 22
(b) Nov. 10
(c) Aug. 1
2. Find the approximate sidereal time for mean solar time 10 pm , February 14.
3. Find the approximate sidereal time of sunrise on Mar. 22.
4. Find date(s) on which sunset is $6: 00$ pm EST in Knoxville and give the Sun's approximate right ascension and declination.
[^0]
[^0]:

