Seasons of the Sun

Understanding the Tropical Year

Earth's axis of rotation is tilted relative to its orbit about the Sun.

This angle of tilt is called the "obliquity".

The axis remains tilted by the same amount and "leans" in the same direction of space as Earth orbits the Sun.

Because the stars are so far away, it appears like the axis of the Earth is always pointing at the same point on the celestial sphere - the Celestial North Pole.

Maximum tilt of Northern
Hemisphere toward Sun

22

Tilt of axis parallels the path of Earth's orbit. Light spans from pole to pole.

December 21

Maximum tilt of Northern Hemisphere away from Sun

Vernal
 Equinox

Summer Solstice

Winter

Solstice

Autumnal
 Equinox

Summer
Solstice

Vernal
Equinox

Winter
Solstice

Autumnal
Equinox

June
21

March 20

December September
21 22

Note: the dates can vary by a day or two year to year.

Equinoxes

- On the day of an equinox the number of daylight hours equals the number of nighttime hours. This is true everywhere on Earth.
- An equinox is also defined as the point where the Sun crosses the celestial equator (i.e. ecliptic intersects equator).
- An equinox is a point in time and a point on the celestial sphere (i.e. a direction in space).

Solstices

- On the day of a solstice the number of daylight hours is maximized or minimized.
- A solstice is also defined as a point where the Sun' s declination is maximized or minimized ($\delta= \pm 23.4^{\circ}$).
- A solstice is a point in time and a point on the celestial sphere (i.e. a direction in space).

On the day of either equinox sunlight shines straight down on the equator.

On the day of either solstice sunlight shines straight down on one of the tropics.

Latitude	Amount of Light	Length of Day	Total Energy
$60^{\circ}-90^{\circ}$			
$30^{\circ}-60^{\circ}$			
$0^{\circ}-30^{\circ}$			

Complete the chart by "counting the rays of sunlight" that fall within a certain range of latitude.

Equinox

Latitude	Amount of Light	Length of Day	Total Energy
$60^{\circ}-90^{\circ}$	1.5	12	18
$30^{\circ}-60^{\circ}$	4.5	12	54
$00^{\circ}-30^{\circ}$	6.0	12	72

Note: the values shown here are relative numbers without specific units and provide a rough way to approximate the amount of sunlight hitting the Earth. To do these calculations more correctly is a very complex problem...

Latitude	Amount of Light	Length of Day	Total Energy
$60^{\circ}-90^{\circ}$		24	
$30^{\circ}-60 \bigcirc$		16	
$0^{\circ}-30^{\circ}$		12	
$-30^{\circ}-0^{\circ}$		8	
$-60^{\circ}--30^{\circ}$		4	
$-90^{\circ}--60^{\circ}$		1	

On the day of either solstice sunlight shines straight down on one of the tropics.

Latitude	Amount of Light	Length of Day	Total Energy
$60^{\circ}-90^{\circ} \mathrm{N}$	4.8	24	115
$30^{\circ}-60^{\circ} \mathrm{N}$	5.7	16	91.2
$0^{\circ}-30^{\circ} \mathrm{N}$	6.3	12	75.6
$0^{\circ}-30^{\circ} \mathrm{S}$	4.9	8	39.2
$30^{\circ}-60^{\circ} \mathrm{S}$	2.2	4	8.8
$60^{\circ}-90^{\circ} \mathrm{S}$	0.1	1	0.1

total energy

Latitude	Vernal Equinox	Summer Solstice	Autumnal Equinox	Winter Solstice
$60^{\circ}-90^{\circ} \mathrm{N}$	18	115	18	0.1
$30^{\circ}-60^{\circ} \mathrm{N}$	54	91.2	54	8.8
$0^{\circ}-30^{\circ} \mathrm{N}$	72	75.6	72	39.2
$0^{\circ}-30^{\circ} \mathrm{S}$	72	39.2	72	75.6
$30^{\circ}-60^{\circ} \mathrm{S}$	54	8.8	54	91.2
$60^{\circ}-90^{\circ} \mathrm{S}$	18	0.1	18	115

total energy

Latitude	Vernal Equinox	Summer Solstice	Autumnal Equinox	Winter Solstice
$60^{\circ}-90^{\circ} \mathrm{N}$	18	115	18	0.1
$30^{\circ}-60^{\circ} \mathrm{N}$	Notice that energy received in the Earth's tropics is fairly steady throughout the year - not much variation through the seasons.			
$0^{\circ}-30^{\circ} \mathrm{N}$	72	75.6	72	39.2
$0^{\circ}-30^{\circ} \mathrm{S}$	72	39.2	72	75.6
$30^{\circ}-60^{\circ} \mathrm{S}$	54	8.8	54	91.2
$60^{\circ}-90^{\circ} \mathrm{S}$	18	0.1	18	115

total energy

Latitude	Vernal Equinox	Summer Solstice	Autumna Equinox	Winter Solstice
$60^{\circ}-90^{\circ} N$ In a temperate zone the energy received varies significantly causing the seasonal changes we are used to in the United States				
$30^{\circ}-60 \bigcirc \mathrm{~N}$	54	91.2	54	8.8
$0^{\circ}-30^{\circ} \mathrm{N}$	72	75.6	72	39.2
$0^{\circ}-30^{\circ} \mathrm{S}$	72	39.2	72	75.6
$30^{\circ}-60 \bigcirc$ S	54	8.8	54	91.2
$60^{\circ}-90^{\circ} \mathrm{S}$	18	0.1	18	115

total energy

Latitude	Vernal Equinox	Summer Solstice	Autumnal Equinox	Winter Solstice
60으응 N	18	115	18	0.1
$30^{\circ}-60 \bigcirc \mathrm{~N}$	In the polar regions there is a great swing in the values. Also the total energy received over the course of a year is significantly less than temperate or equatorial regions:			
$0^{\circ}-300 \mathrm{~N}$	72	75.6	72	39.2
$0-30 \bigcirc$ S	72	$\begin{gathered} 39.2 \\ 72+39.2+72 \end{gathered}$	$\begin{aligned} & 72 \\ & +75.6=258.8 \text { tptal } \end{aligned}$	75.6
$30^{\circ}-60 \bigcirc$ S	54	8.8 $54+8.8$	$\begin{gathered} 54 \\ 4+91.2=208 \text { tttal } \\ \hline \end{gathered}$	91.2
$60^{\circ}-90 \bigcirc$ S	18	$\begin{gathered} 0.1 \\ 18+0.1+1 \end{gathered}$	$\begin{gathered} 18 \\ 3+115=151.1 \text { tptal } \end{gathered}$	115

The Tropical Year

- Tropical Year $=365.2422$ days, which is the time for the Sun to complete one trip "through the tropics", i.e. the time to go from one vernal equinox to the next.
- This is a complete cycle of seasons during which Sun appears higher and lower in our sky.
- Length of day and angle of sunlight relative to Earth's surface control the seasons.

Distance Variation

- As Earth orbits the Sun, the distance varies by about $\pm 1.7 \%$.
- Average Distance: 149.6 Gm $\begin{array}{ll}\text { Minimum Distance: } & \text { 147.1 Gm } \\ \text { Maximum Distance: } & \text { 152.1 Gm }\end{array}$
- Dates of the year (approximate): Minimum: January 3; Maximum: July 4
- This has very little effect on the Earth's temperature and the seasons! The change in distance causes only $\pm 3 \%$ change in energy received from the Sun.

