+ 35° 53' 16" - 84° 09' 35"

35° 53' 16" N 84° 09' 35" W

(the precise location of Farragut High School!)

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	2-3
3	Solve problems involving rate, amount, and time.	4 – 7
4	Solve problems involving "skinny triangles."	8 – 13
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	14 – 15
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	16-21
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	22 – 24

Spherical Coordinates

- Any location on Earth can be specified by coordinates of latitude and longitude.
- Likewise, a point on *any* spherical surface can be specified by two angles.
- Such systems are called spherical coordinates.
- In astronomy there are several different spherical coordinate systems of interest.

Latitude

- Latitude is the angular distance northward or southward from the equator.
- On a globe or map, latitude is represented by lines running east and west, parallel to the equator.
- Latitude, ϕ , is an angle in the range: $-90^{\circ} \le \phi \le +90^{\circ}$

source: Geography World – www. geograpyworldonline.com

Parallels

- The east-west lines of latitude are sometimes referred to as parallels.
- The reference is the equator, which is defined to be zero degrees latitude.
- The equator is halfway between the north and south poles, which are defined by the axis of the Earth's rotation.

Fun With Globes

1. Determine the spacing of the lines of latitude (*i.e.* parallels) and label with the appropriate values in degrees.

Tropic of Cancer

Equator

Longitude

- Longitude is the angular distance east or west, measured in a plane parallel to the equator.
- On a globe or map longitude is represented by lines running north and south, perpendicular to the equator.
- Longitude, λ , is an angle in the range: -180° $\leq \lambda \leq +180^{\circ}$

source: Geography World – www. geograpyworldonline.com

the Prime Meridian

- The north-south lines of longitude are sometimes referred to as meridians.
- The reference for measuring longitude is the prime meridian, which is an imaginary north and south line passing through Greenwich England.
- By definition (and international agreement), the prime meridian is zero degrees longitude.

Greenwich Royal Observatory established 1675

Original Prime Meridan

Prime Meridan determined by satellites 2015

source: Google Maps, Infoterra Ltd, and Bluesky

Fun With Globes

- 1. Determine the spacing of the lines of latitude (*i.e.* parallels) and label with the appropriate values in degrees.
- 2. Determine the spacing of the lines of longitude (*i.e.* meridians) and label with the appropriate values in degrees.

England Meridian 30° E 30° W 0 increments of 5°

Fun With Globes

- 1. Determine the spacing of the lines of latitude (*i.e.* parallels) and label with the appropriate values in degrees.
- 2. Determine the spacing of the lines of longitude (*i.e.* meridians) and label with the appropriate values in degrees.
- 3. Mark the location of FHS based on its coordinates.
- 4. Determine the approximate coordinates of(a) the Bering Straight and (b) Madagascar.

The student will be able to:		HW:
1	Utilize and convert SI units and other appropriate units in order to solve problems.	1
2	Utilize the concept of orders of magnitude to compare amounts or sizes.	2-3
3	Solve problems involving rate, amount, and time.	4-7
4	Solve problems involving "skinny triangles."	8 – 13
5	Solve problems relating the radius of a circle to diameter, circumference, arc length, and area.	14 – 15
6	Define and utilize the concepts of latitude, longitude, equator, North Pole and South Pole in order to solve related problems.	16-21
7	Define and utilize the concepts of altitude, azimuth, zenith, and nadir in order to solve related problems.	22 – 24

Altazimuth Coordinates

- The purpose is to specify the apparent position of an object from the perspective of the observer.
- Values of altitude and azimuth give the position on the observer's celestial sphere.
- The celestial sphere is an imaginary globe surrounding the observer that is located at its center.

Altitude

- Altitude is the angular distance measured vertically from the observer's horizon.
- Altitude, ϕ , is an angle in the range: $-90^{\circ} \le \phi \le +90^{\circ}$
- 0° = on the horizon (level with the eye)
- +90° = at the zenith (directly above)
- -90° = at the nadir (directly below)

Azimuth

- Azimuth is the angular distance measured clockwise from north in the plane of the horizon.
- Azimuth, θ , is an angle in the range: $0^{\circ} \le \theta < 360^{\circ}$
- $0^{\circ} = North$
- 90° = East
- 180° = South
- 270° = West

Meridian

- When using altazimuth coordinates, the term meridian refers to an imaginary line passing through the zenith and running north and south around the celestial sphere.
- It is also sometimes referred to as the local meridian or observer's meridian.
- It can be thought of as a projection (into the sky) of the observer's geographical meridian (*i.e.* line of longitude).

Fun With Hemispheres

- Create an observer and horizon on a blank piece of paper by tracing around the bottom of the hemisphere. Label the four cardinal points on your paper: N, S, E, and W.
- 2. Use wet erase marker to label the altitude and azimuth lines on the hemisphere. Label the four cardinal directions around the bottom of the hemisphere.

Fun With Hemispheres

- Create an observer and horizon on a blank piece of paper by tracing around the bottom of the hemisphere. Label the four cardinal points on your paper: N, S, E, and W.
- 2. Use wet erase marker to label the altitude and azimuth lines on the hemisphere. Label the four cardinal directions around the bottom of the hemisphere.

Fun With Hemispheres

- Create an observer and horizon on a blank piece of paper by tracing around the bottom of the hemisphere. Label the four cardinal points on your paper: N, S, E, and W.
- 2. Use wet erase marker to label the altitude and azimuth lines on the hemisphere. Label the four cardinal directions around the bottom of the hemisphere.
- 3. Use wet erase marker to plot the locations of the Sun, Moon, etc. as determined by computer program.

Q: What were the altitude and azimuth of the camera when this photo was taken?

Alt = 39°, Az = 141°

"I Spy" – Altaz Game!

- Secretly locate an object in the room and use your hemisphere to estimate its altitude and azimuth. (Partner closes eyes.)
- Give the coordinates to your partner and challenge them to determine the object you spied. Hemisphere must not move!
- Then reverse roles and have your partner spy an object and give you the coordinates for you to guess.

Fun With Hemispheres

4. Turn your hemisphere over and look at the markings "from the inside out". What do you notice about east and west? What about the azimuth values?

View of a hemisphere looking "from the inside out"

1

Notice that east and west appear reversed!

