the Stars

- I. Position and Motion Parallax, Proper Motion, Redshift
- II. Size Dwarfs, Giants, Stefan-Boltzman
- III. Brightness Magnitude, flux, distance
- IV. Color & Temperature B-V index, Spectral Type
- V. H-R diagrams Luminosity Classes

The Size of the Stars

How do we know?

The student will be able to:		HW:
1	Define and apply stellar parallax and the unit of the parsec.	1 – 3
2	Relate parallax and the parsec to skinny triangles and other units such as meters and light years.	
3	Define and describe proper motion.	4-6
4	Describe and apply methods by which the velocity of a star through space may be determined by including both radial and transverse velocity.	
5	Describe direct and indirect methods used to determine the size of a star and classify stars as giants, supergiants, or dwarfs.	7 – 8
6	State and apply the relation between luminosity, radius, and temperature.	
7	State and apply the relation between luminosity, distance, and energy flux.	9-16
8	Define and contrast the concepts: absolute magnitude, intrinsic brightness, luminosity, and apparent magnitude, apparent brightness, energy flux.	
9	Explain and apply the magnitude scale of brightness.	
10	Describe and apply the relation between a stars color and its temperature.	17
11	Define, describe, and apply color index and explain its application in photometry and its relationship to blackbody radiation and Wein's Law.	
12	State in order of temperature the stellar spectral classes and list characteristics and examples of each.	18
13	Describe and define the Hertzsprung-Russell diagram in terms of each axis.	19 – 23
14	Plot a star's coordinates on the H-R diagram.	
15	Explain and illustrate how the H-R diagram is used to help classify and understand different types of stars such as main sequence stars, red giants, blue giants, supergiants, red dwarfs, and white dwarfs.	
16	Define, describe, and give examples of the stellar luminosity classes.	24 - 25
17	Describe and apply the method of spectroscopic parallax and explain the importance of luminosity class to this method.	
18	Describe and explain methods for determining a star's mass and relate to the different types of binary-star systems: visual binary, spectroscopic binary, and eclipsing binary.	26
19	Describe and explain the significance of a star's mass in determining its location on the H-R diagram and in determining the lifetime of the star.	27
20	Describe properties and significance of open clusters and globular clusters.	

Range of Sizes

- The diameters of the stars vary greatly.
- Stars can be hundreds of times greater or smaller in diameter than the Sun.
- The radius or diameter of the Sun is used as a sort of "unit" for measuring other stars.
- The symbol for the radius of the Sun: R_{\odot}

Classifications

- Dwarf Star = any star of diameter comparable to the Sun or smaller. $R \leq 10 \ R_{\odot}$
- Giant Star = a star between 10 and 100 times greater in diameter than the Sun. $10 R_{\odot} \le R \le 100 R_{\odot}$
- Supergiant Star = a star greater than 100 solar diameters (and into the thousands) $R \ge 100 R_{\odot}$

3 Methods for Finding Size

- The very largest of stars can be imaged with high magnification. The apparent angular diameter and distance yields the true diameter. (skinny triangle!)
- Some star's diameters may be determined due to eclipsing binaries.
- Most often the known luminosity and temperature of a star are used to infer the diameter.

Actual Image of Betelgeuse!

angular dia. = 0.045''distance = 130 pc radius = 630 R_{\odot}

image: ESO, ALMA radio interferometer $\lambda \approx 1$ mm

Actual Image of Betelgeuse!

image: ESO, ALMA radio interferometer $\lambda \approx 1$ mm

0.015"

These are example "light curves" – a commonly used astronomical graph. It shows the relative brightness of a star versus time or phase. The black dots are actual measurements made with a photometer. The dips in brightness shown on these graphs are typical patterns for eclipsing binary star systems.

Eclipsing Binary Star System:

Notes on Multiple Star Systems

- More than half of the largest and brightest stars are found in multiple star systems – the most common type is binary (2 stars).
- Smaller, dimmer stars tend to be single lone stars.
- A binary is an *eclipsing* binary only if the plane of the orbits is oriented toward Earth.
- Observable binaries yield important data for determining stellar properties such as diameter and mass.

What we see or measure with photometer:

What we can't see, but conclude is happening:

What could account for the differences in this graph versus the previous? Δ $\sum_{i=1}^{n}$ Discuss with classmate(s). Brightness Time

Indirect Method to Find Size

- For a given temperature, the larger a star, the more luminous it is.
- For a given diameter, the hotter a star, the more luminous it is.
- By finding luminosity and temperature astronomers can calculate the size of a star.

Web Links Astronomy

Home AP Physics 1 AP Physics 2 AP Physics C Astronomy

various Animations - Fusion, Blackbody Kadiation

The Stars

88 IAU Constellations - convenient Wikipedia index with hyperlinks

Lists of Stars - hyperlinks to various Wikipedia pages - nearest, brightest, most luminous, etc.

In-The-Sky Star Data - Information, charts, etc. organized by constellation

The Internet Stellar Database - Collection of dat 100,000 Stars - Interactive 3D view of Sun's cos

Luminosity Simulation

<u>Various Animations</u> - Parallax, Proper Motion, H-R Diagram, Eclipsing Binaries <u>Eclipsing Binary Simulator</u> - Interactive applet from University of Nebraska

AAVSO - Variable Stars Data, Info, etc.

Luminosity Simulation - Explore Luminosity vs Temperature vs Diameter from University of Nebraska Spectral Types - Java applet illustrating connection with temperature

Spectroscopic Binaries - Animations showning shifts in spectra

Interactive HR Diagram - HTML5 simulation: relations of temperature, color, radius, luminosity, etc.

Pulsar Signals - Audio clips of radio "sounds" from Jodrell Bank

Pulsar Signals - Audio clips of radio "sounds" from Cornell

SI Units: $L = 4\pi R^2 \sigma T^4 = 4\pi (6.96 \times 10^8 \text{ m})^2 \sigma (5780 \text{ K})^4$ Solar Units $L = R^2 T^4 = (1 R_{\odot})^2 (1.00 T_{\odot})^4 = 1.00 L_{\odot}$ Experiment with the simulation. Under the Info menu read the Background and do the Exercises.

Objectives Background Exercises

About

 $= 3.9 \times 10^{26}$ J/s

Stefan-Boltzman Law

$$L = r^2 T^4$$

Where: L = luminosity r = radius (or diameter) T = surface temperature Note: all values in solar units

Practice With $L = r^2 T^4$

- 1. Suppose star A is twice the diameter of the Sun but has the same temperature. What is its luminosity?
- 2. Suppose star B is twice the temperature of the Sun but has the same radius. What is its luminosity?
- Find Altair in the table calculate its luminosity using its radius and temperature. Compare to the published value.
- 4. Pick another star from the table and calculate *L* using *r* and *T*. Does it work?

This can be solved for radius or diameter. All results and values are multiples of the Sun's properties.

$$r = \sqrt{\frac{L}{T^4}} = \frac{\sqrt{L}}{T^2}$$

Practice Finding Size

- 4. Suppose star D is four times the luminosity of the Sun but has the same temperature. What is its radius?
- 5. Suppose star E twice the temperature of the Sun but has the same luminosity. What is its radius?
- 6. Suppose star F has temperature 7000 K and luminosity 1000 times that of the Sun. Find its diameter.
- 7. Find the radii of Acrux A and B and fill in the table. Are these dwarfs? giants? supergiants?