Current and Circuits

I. Current and Power

- the ampere
II. Ohm's Law and Resistance
- the ohm
- resistors
III. Series and Parallel Circuits - applications

	The student will be able to:	HW:
1	Define electric current and the Ampere and solve problems relating current to charge and time.	$1-3$
2	Solve problems involving electric power.	$4-10$
3	Define resistance and the ohm and solve problems using Ohm' s Law to relate voltage, current, and resistance.	$11-23$
4	Calculate the effective total resistance for multiple resistors connected in series or parallel and analyze DC circuits consisting of a combination of series and parallel branches of resistors and/or voltage sources, determining voltage and current for each element.	$24-37$

There are primarily two ways to connect electrical devices: series and parallel.

The behavior of a circuit is dependent upon the type of connections within it. There are important applications of both series and parallel circuits.

In many ways the two types of circuit connections are "opposites" or "inverses" of one another.

Series Connections

Electrical devices are connected in sequence, linked by conductors, so that current proceeds through the devices in a particular order.

Key characteristics:

The current is the same through each device. The voltage across any set of devices in series is equal to the sum of the voltages across each device in the set.

Series Connections

The current is the same through each device.
The voltage across any set of devices in series is equal to the sum of the voltages across each device in the set.

Series Example

Series Example

Parallel Connections

Electrical devices are connected between two conductors so that current may branch out and proceed through the devices simultaneously.

Key characteristics:

The voltage is the same across each device. The current through any set of devices in parallel is equal to the sum of the currents through each device in the set.

Parallel Connections

The voltage is the same across each device. The current through any set of devices in parallel is equal to the sum of the currents through each device in the set.

Parallel Example

Parallel Example

Resistor Combinations

- Multiple resistors may be connected in series or parallel.
- A particular combination of resistors will pose a certain resistance to the flow of charge.
- Any particular resistor combination may be said to have an "effective" or "equivalent" resistance of a certain number of ohms.

Equivalent Resistance of Series Resistors

Equivalent Resistance of Parallel Resistors

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

The equivalent resistance is less than that of any single resistor in the set.

I

A switch in a circuit may be viewed as a resistor that can have two values:

infinite ohms when the

 switch is "open" or "off",zero ohms when the switch is "closed" or "on"

$$
I=V / \infty=0
$$

© Matthew W. Milligan

© Matthew W. Milligan

© Matthew W. Milligan

© Matthew W. Milligan

A "short circuit" has large current due to little resistance
(and can effectively $\quad I=0$ prevent current in other parts of the circuit).
$I=0$
$R=0 \Omega$

$I=\infty \mathrm{A}$

Circuit diagram of an
1Ω electronic switch. Transistors have resistance that can be "switched" on or off by voltage applied to the input.

a typical household circuit

Hair Dryer 1200 W

© Matthew W. Milligan

© Matthew W. Milligan

© Matthew W. Milligan

Ungrounded Appliance

