Energy, Work, and Power

I. Energy

- kinetic and potential
- conservation

II. Work

- dot product
- work-energy relations
III. Springs
IV. Power
- machines and efficiency

	The student will be able to:	HW:
1	Define and apply the concepts of kinetic and potential energy and use the conservation of energy to explain physical phenomena.	
2	Calculate mechanical kinetic energy and gravitational potential energy (in Joules) and use conservation of energy to solve related problems.	$8-16$
3	Define and calculate work and solve related problems.	$17-23$
4	Relate and equate work and energy and solve related problems.	$24-30$
5	Solve problems involving work and energy for a mass attached to a spring.	$31-33$
6	Define and calculate power (in Watts or horsepower) and solve related problems.	$34-41$
7	Solve problems involving machines and efficiency.	$42-45$

Work

Work done on an object is defined as the "dot product" of force and displacement:

$$
W=\vec{F} \cdot \vec{d}
$$

which means to multiply only the collinear components of force \& displacement.

This can be shown to equal the following:

$$
W=F d \cos \phi
$$

Work

$$
W=F d \cos \phi
$$

where: $F=$ magnitude of force $d=$ magnitude of displacement $\phi=$ angle between \mathbf{F} and \mathbf{d}
(i.e. the difference in directions)

Force you exert on book:	Displacement of book:	Work you do on the book:
$15 \mathrm{~N} \uparrow$	0 m	0 J
$15 \mathrm{~N} \uparrow$	$1 \mathrm{~m} \uparrow$	15 J
$15 \mathrm{~N} \uparrow$	$1 \mathrm{~m} \downarrow$	-15 J
$15 \mathrm{~N} \uparrow$	$2 \mathrm{~m} \uparrow$	30 J
$30 \mathrm{~N} \uparrow$	$2 \mathrm{~m} \uparrow$	60 J
$15 \mathrm{~N} \uparrow$	$2 \mathrm{~m} \rightarrow$	0 J
$5.0 \mathrm{~N} \rightarrow$	$0.5 \mathrm{~m} \rightarrow$	2.5 J
$5.3 \mathrm{~N} \pi$	$0.5 \mathrm{~m} \rightarrow$	1.9 J
0 N	$0.1 \mathrm{~m} \downarrow$	0 J

Key Ideas About Work

- Work is a scalar quantity that may be positive or negative. It does not have a direction like a vector.
- Because energy is required to do work there will always be a corresponding change in energy when work is done.

Energy, Work, and Power

I. Energy

- kinetic and potential
- conservation
II. Work
- dot product
- work-energy relations
III. Springs
IV. Power
- machines and efficiency

	The student will be able to:	HW:
1	Define and apply the concepts of kinetic and potential energy and use the conservation of energy to explain physical phenomena.	
2	Calculate mechanical kinetic energy and gravitational potential energy (in Joules) and use conservation of energy to solve related problems.	$8-16$
3	Define and calculate work and solve related problems.	$17-23$
4	Relate and equate work and energy and solve related problems.	$24-30$
5	Solve problems involving work and energy for a mass attached to a spring.	$31-33$
6	Define and calculate power (in Watts or horsepower) and solve related problems.	$34-41$
7	Solve problems involving machines and efficiency.	$42-45$

When work is done there is always a corresponding energy transfer and/or transformation.

If a force does on an object:	The effect on the object will be:
Positive Work	Increase in Energy
Zero Work	No Change in Energy
Negative Work	Decrease in Energy

The amount of work will precisely equal the amount of change in energy!

Work-Energy Theorem

Positive or negative work done on an object will increase or decrease its kinetic energy:

$$
\begin{aligned}
& W_{n e t}=\Delta K E \\
& W_{n e t}=K E_{f}-K E_{i}
\end{aligned}
$$

where: $W_{\text {net }}=$ the sum of work done by all forces acting on the object (may include some negative work values)

Energy, Work, and Power

I. Energy

- kinetic and potential
- conservation
II. Work
- dot product
- work-energy relations
III. Springs
IV. Power
- machines and efficiency

	The student will be able to:	HW:
1	Define and apply the concepts of kinetic and potential energy and use the conservation of energy to explain physical phenomena.	
2	Calculate mechanical kinetic energy and gravitational potential energy (in Joules) and use conservation of energy to solve related problems.	$8-16$
3	Define and calculate work and solve related problems.	$17-23$
4	Relate and equate work and energy and solve related problems.	$24-30$
5	Solve problems involving work and energy for a mass attached to a spring.	$31-33$
6	Define and calculate power (in Watts or horsepower) and solve related problems.	$34-41$
7	Solve problems involving machines and efficiency.	$42-45$

Potential Energy and Work

- Potential energy represents "potential for work to be done" by a certain force.
- Finding the change in potential energy is essentially a "short cut" for finding the work done by a particular conservative force.
- The equation $K E_{1}+P E_{1}=K E_{2}+P E_{2}$ is not valid for situations in which work is done by nonconservative forces. But, we can "fix it up" and make it more universal...

Work and Conservation of Energy

Work done by nonconservative forces can alter the total energy of an object:

$$
W_{N C}+K E_{1}+P E_{1}=K E_{2}+P E_{2}
$$

where: $W_{N C}=$ the sum of work done by all nonconservative forces acting on the object between points 1 and 2

Potential energy can only be determined for conservative forces such as gravity or the force of a spring. The amount of work done by such a force depends only on change in position.

Nonconservative forces do an amount of work that depends upon the path taken as an object moves from one position to another. These include: friction, air resistance, applied forces, tension, etc.

What is the most hazardous
point on the track for the riders?
© Matthew W. Milligan

	A	B	C	D	E	F	G
height (cm)	45.3	3.2	33.6	3.2	26.0	3.2	22.8
dist. (cm)	0	70.5	122.0	168.0	216.5	260.5	294.5
radius (cm)	N/A	18.0	12.2	18.0	14.3	23.1	N/A

© Matthew W. Milligan

© Matthew W. Milligan

	A	B	C	D	E	F	G
height (cm)	45.3	3.2	33.6	3.2	26.0	3.2	22.8
dist. (cm)	0	70.5	122.0	168.0	216.5	260.5	294.5
radius (cm)	N/A	18.0	12.2	18.0	14.3	23.1	$\mathrm{~N} / \mathrm{A}$
speed $(\mathrm{m} / \mathrm{s})$	0						0
acc. $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	-						-

Determine the speed and centripetal acceleration. Mass $=57.2 \mathrm{~g}$

	A	B	C	D	E	F	G
height (cm)	45.3	3.2	33.6	3.2	26.0	3.2	22.8
dist. (cm)	0	70.5	122.0	168.0	216.5	260.5	294.5
radius (cm)	N / A	18.0	12.2	18.0	14.3	23.1	$\mathrm{~N} / \mathrm{A}$
speed $(\mathrm{m} / \mathrm{s})$	0	2.68	0.683	2.39	0.735	2.09	0
acc. $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	-	40.0	3.82	31.9	3.78	18.8	-

Force of friction $=0.0428 \mathrm{~N}$ Mass $=57.2 \mathrm{~g}$

