Acceleration

A rate of a rate (how fast how fast?)

Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement, Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	-7
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	$8-16$
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and use the conditions of freefall, including the value of g, to solve associated problems.	$29-41$

Acceleration of a Car

- A car' s acceleration is often described by citing a "zero to sixty" time such as: 0 to 60 mph in 15 seconds.
- The less the time, the greater the acceleration. Zero to 60 mph in 10 seconds would be a greater acceleration than the previous example.
- The more rapid the increase in speed, the greater the acceleration.
- How could the rate of change in speed be quantified by a single value?

Acceleration in Physics

- Acceleration is the time rate of change in velocity. Symbol: a or \vec{a}
- Note that acceleration is a vector indicating how much change per unit time and the direction of change.
- Unlike our everyday use of the word, acceleration pertains to any change in velocity including: increase in speed, decrease in speed, or change in direction.

Equations

Average acceleration:

Constant acceleration: (If the rate of change is known to be constant the word average may be
 dropped.)

Equations

Average acceleration:

$$
\overrightarrow{\mathrm{a}}_{a v g}=\frac{\overrightarrow{\mathrm{v}}_{\mathrm{f}}-\overrightarrow{\mathrm{v}}_{\mathrm{i}}}{t}
$$

Constant acceleration: (If the rate of change is known to be constant the word average may be

$$
\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{V}}_{\mathrm{f}}-\overrightarrow{\mathrm{V}}_{\mathrm{i}}}{t}
$$ dropped.)

$\uparrow \quad$ Velocity vs. Time

$$
\text { slope }=\text { zero }
$$

Acceleration $=0 \mathrm{~m} / \mathrm{s}^{2}$ at points in time after $t=8.0 \mathrm{~s}$. Note that the object is moving but not accelerating when its velocity is constant.

Time (s)

Velocity vs. Time

The "area under the curve" is an "area-like" calculation for a region between the curve or line and the x-axis. What would it represent on this type of graph?

The "area" on this graph represents a product of velocity and time and thus equals the displacement of the object.
1.6
2.4
3.2

Time (s)

Velocity vs. Time
Area of a trapezoid: $A=1 / 2\left(b_{1}+b_{2}\right) h$

$$
\begin{aligned}
& A=1 / 2(10.2+2.2 \mathrm{~m} / \mathrm{s})(4 \mathrm{~s}) \\
& A=24.8 \mathrm{~m}
\end{aligned}
$$

$$
\mathbf{d}=24.8 \mathrm{~m}, \mathrm{left}
$$

