Acceleration

A rate of a rate (how fast how fast?)

Kinematics Unit Outline

- I. Vectors
- II. Six Definitions:Distance, Position, Displacement,Speed, Velocity, Acceleration
- III. Two Equations:Velocity, Displacement
- IV. Freefall

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1, 2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	3-7
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	8 – 16
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	17 – 28
6	State and use the conditions of freefall, including the value of g , to solve associated problems.	29 – 41

Acceleration of a Car

- A car's acceleration is often described by citing a "zero to sixty" time such as:
 0 to 60 mph in 15 seconds.
- The less the time, the greater the acceleration. Zero to 60 mph in 10 seconds would be a greater acceleration than the previous example.
- The more rapid the increase in speed, the greater the acceleration.
- How could the *rate* of change in speed be quantified by a *single* value?

Acceleration in Physics

- Acceleration is the time rate of change in velocity. Symbol: a or \vec{a}
- Note that acceleration is a vector indicating how much change per unit time *and* the direction of change.
- Unlike our everyday use of the word, acceleration pertains to *any* change in velocity including: increase in speed, decrease in speed, or change in direction.

Constant acceleration: (If the rate of change is known to be constant the word average may be dropped.)

Constant acceleration: (If the rate of change is known to be constant the word average may be dropped.)

$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{t}$$

Velocity vs. Time

х

7.2

6.4

5.6

4.8

Time

Velocity (m/s, left)

12.5

0.8

The "area under the curve" is an "area-like" calculation for a region between the curve or line and the *x*-axis. What would it represent on this type of graph?

3.2

2.4

1.6

Velocity vs. Time

Velocity (m/s, left)

12.5

The "area under the curve" is an "area-like" calculation for a region between the curve or line and the *x*-axis. What would it represent on this type of graph?

The "area" on *this* graph represents a product of velocity and time and thus equals the **displacement** of the object. 0.8 16 24 32 4 48 56 64 72 8 Time (s)

