Kinematics Unit Outline

- I. Vectors
- II. Six Definitions:Distance, Position, Displacement,Speed, Velocity, Acceleration
- III. Two Equations:Velocity, Displacement
- IV. Freefall

Two Formulas

a "standard" kinematics model...

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1, 2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	3 – 7
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	8-16
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	17 – 28
6	State and use the conditions of freefall, including the value of g , to solve associated problems.	29-41

A Kinematics Model

- The six kinematics concepts (position, displacement, distance, speed, velocity, and acceleration) are interrelated.
- Two fairly simple formulas that relate some of these variables can be used to solve a huge variety of problems.
- The two formulas can be thought of as a simple and yet comprehensive *model* of moving objects.

Consider an object with initial velocity, v_i , and acceleration, **a**.

After a given amount of time, t, the object will have a final velocity, \mathbf{v}_{f} , and undergo displacement, **d**. It can be shown that:

$$\vec{v}_f = \vec{v}_i + \vec{a}t \qquad \vec{d} = \vec{v}_i t + \frac{1}{2}\vec{a}t^2$$

A "Standard" Model of Motion

velocity:
$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

displacement:

$$\vec{d} = \vec{v}_i t + \frac{1}{2}\vec{a}t^2$$

Important!

Acceleration must be **constant** for these equations to be true.

Vector directions must be accounted for using +/- signs.

Constant Acceleration Formulas

It is possible to derive many other equations from the two most fundamental formulas. These additional equations are not essential but can be useful for certain types of problems – subject to the same condition of constant acceleration!