Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement, Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

Two Formulas

a "standard" kinematics model...

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	${ }^{3-7}$
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	8^{8-16}
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and use the conditions of freefall, including the value of g, to solve associated problems.	$29-41$

A Kinematics Model

- The six kinematics concepts (position, displacement, distance, speed, velocity, and acceleration) are interrelated.
- Two fairly simple formulas that relate some of these variables can be used to solve a huge variety of problems.
- The two formulas can be thought of as a simple and yet comprehensive model of moving objects.

Consider an object with initial velocity, $\mathbf{v}_{\mathbf{i}}$, and acceleration, a.

d
After a given amount of time, t, the object will have a final velocity, \mathbf{v}_{f}, and undergo displacement, d. It can be shown that:

$$
\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \quad \vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}
$$

A "Standard" Model of Motion

$$
\text { velocity: } \quad \vec{v}_{f}=\vec{v}_{i}+\vec{a} t
$$

$$
\text { displacement: } \vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}
$$

Acceleration must be constant for these equations to be true.
 Vector directions must be accounted for using +/- signs.

Constant Acceleration Formulas

$$
\begin{array}{cc}
\vec{v}_{f}=\vec{v}_{i}+\vec{a} t & v_{f}^{2}=v_{i}^{2}+2 a d \\
\vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} & \vec{d}=\frac{1}{2}\left(\vec{v}_{i}+\vec{v}_{f}\right) t
\end{array}
$$

It is possible to derive many other equations from the two most fundamental formulas. These additional equations are not essential but can be useful for certain types of problems - subject to the same condition of constant acceleration!

