# Fascinating Freefall Facts 

Understanding the effect of gravity

## Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement, Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

|  | The student will be able to: | HW: |
| :---: | :--- | :---: |
| 1 | Define and distinguish the concepts scalar and vector. Make <br> the connection between the visual representation of a vector <br> and its numerical representation of magnitude and direction <br> angle. |  |
| 2 | Define, distinguish, and apply the concepts: distance, <br> displacement, position. | 1,2 |
| 3 | Define, distinguish, and apply the concepts: average speed, <br> instantaneous speed, constant speed, average velocity, <br> instantaneous velocity, constant velocity. | ${ }^{3-7}$ |
| 4 | Define, distinguish, and apply the concepts: average <br> acceleration and instantaneous acceleration, and constant <br> acceleration. | $\underbrace{8-16}$ |
| 5 | State the displacement and velocity relations for cases of <br> constant acceleration and use these to solve problems given <br> appropriate initial conditions and values. | $\mathbf{c}^{17-28}$ |
| 6 | State and use the conditions of freefall, including the value of <br> g, to solve associated problems. | $29-41$ |

## Fascinating Freefall Facts

- Any and all objects under the sole influence of gravity have the same acceleration regardless of size or mass.
- The acceleration of gravity is denoted $g$. Its mean value near the earth' s surface:

$$
\mathbf{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} \text { downward }
$$

- This value is quite accurate for any object in freefall when forces other than gravity are relatively small.

Values of $g\left(\mathrm{in} \mathrm{m} / \mathrm{s}^{2}\right)$

| Mexico City | 9.779 | Madrid | 9.800 |
| :--- | :--- | :--- | :--- |
| Jakarta | 9.781 | San Francisco | 9.800 |
| Manila | 9.784 | Washington DC | 9.801 |
| Rio de Janeiro | 9.788 | New York | 9.802 |
| Miami | 9.7902096 | Chicago | 9.803 |
| Los Angeles | 9.796 | Rome | 9.803 |
| Denver | 9.7961848 | Seattle | 9.8072544 |
| Knoxville, TYS | 9.7968816 | Paris | 9.809 |
| Knoxville, UT | 9.7969745 | Vancouver BC | 9.809 |
| Buenos Aires | 9.797 | London | 9.812 |
| Sydney | 9.797 | Amsterdam | 9.813 |
| Tokyo | 9.798 | Oslo | 9.819 |

## The Effect of Air Resistance

Air can have a significant effect on a freefalling object depending on:

- Size - the greater the "cross section", the greater the air resistance
- Shape - the less streamlined, the greater the air resistance
- Speed - the greater the speed through the air, the greater the air resistance
The slower and denser the object, the less will be the effect of air resistance.


## Modeling the Effect of Gravity

- As long as gravity is the only significant force acting on an object (disregarding air resistance or any other force) it will have an acceleration close to $g$.
- Unless other factors are significant any object anywhere on Earth or near its surface in a freefall condition will accelerate downward at approximately $9.80 \mathrm{~m} / \mathrm{s}^{2}$.
- This value is often used with the standard constant acceleration formulas to solve problems involving objects moving under the influence of gravity.

