Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement, Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

Speed and Velocity

Motion: How fast?

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	$3-7$
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	$8-16$
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and use the conditions of freefall, including the value of g, to solve associated problems.	$29-41$

Definitions:

- Speed is the time rate of change in distance. Symbol: v
Speed is a scalar quantity that indicates how rapidly an object moves along its path of travel.
- Velocity is the time rate of change in position. Symbol: \vec{v}
Velocity is a vector quantity indicating how rapidly an object is moving and in what direction. (speed and direction)

Average Speed:

Average Velocity:

$a \vee 8$
Δt

Constant Speed and Velocity

$$
v=\frac{d}{t}
$$

Valid ONLY if the ratio of change is constant!

Constant Speed or Velocity

- "Constant speed" means the ratio of change in distance to time is constant. (Object moves the same number of meters every second.)
- "Constant velocity" means the ratio of change in position to time is constant.
(Object moves the same number of meters in the same direction every second.)

Distance vs. Time
 Time (s)

Distance vs. Time
(5,90)

Distance vs. Time

Time (s)

Position vs. Time

Time (s)

