Kinematics

Mathematical Description of Motion

Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement,
Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	$3-7$
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	$8-16$
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and use the conditions of freefall, including the value of g, to solve associated problems.	$29-41$

Scalars and Vectors

Types of Quantities

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	$3-7$
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	$8-16$
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and use the conditions of freefall, including the value of g, to solve associated problems.	$29-41$

Scalars vs. Vectors

A scalar is a quantity that has only magnitude

- A scalar may be completely described by a single numerical value (may include units) that indicates the amount.

A vector is a quantity that has both magnitude and direction.

- The value of a vector is comprised of two or more pieces of information: a positive value indicating magnitude and some indication of direction.

Vector Notation

A vector is often described by two numerical values: magnitude and direction angle.

- The magnitude quantifies the amount or size of the vector.
- The direction angle is measured counterclockwise from an imaginary line passing through the tail of the vector and extending horizontally to the right or east.

Some example vectors depicted:

$$
\overrightarrow{\mathbf{B}}=6.0 \mathrm{~m} / \mathrm{s}, 270.0^{\circ}
$$

Cardinal Directions

(object moving in a vertical plane)

$$
\mathrm{Up}=90^{\circ}
$$

Down $=270^{\circ}$
Angles such as these might be used to describe a baseball moving through the air, for example

Cardinal Directions

(object moving in a horizontal plane)

South $=270^{\circ}$

Angles such as these might be used to describe the flight of an aircraft across the country, for example.

