Periodic Motion

I. Circular Motion

- kinematics \& centripetal acceleration
- dynamics \& centripetal force
- centrifugal force
II. Universal Gravitation
- Newton's "4 ${ }^{\text {th" }}$ Law
- force fields \& orbits
III. Simple Harmonic Motion
- pendulums, springs, etc

	The student will be able to:	
1	Define and calculate period and frequency.	
2	Apply the concepts of position, distance, displacement, speed, velocity, acceleration, and force to circular motion.	
3	State and correctly apply the relation between speed, radius, and period for uniform circular motion.	
4	State and correctly apply the relation between speed, radius, and centripetal acceleration for uniform circular motion.	$1-14$
5	Distinguish and explain the concepts of centripetal vs. centrifugal force.	$15-16$
6	State and apply Newton's Law of Universal Gravitation.	$17-28$
7	Combine equations of circular motion and gravitation to solve problems involving orbital motion.	$29-37$
8	State and apply the relation between length, period, and g for a pendulum.	$38-40$
9	Solve problems involving application of Hooke' s Law to the periodic motion of a mass attached to a spring. Also state and apply the relation between mass, period, and spring constant.	$41-43$

Let' s put ourselves in Newton's shoes...

Once upon a time, Isaac

Newton was under an apple tree...

$2^{\text {nd }}$ Law:

In order to accelerate down

 there must be force downIn order to fall equally, gravity on an apple with twice the mass must be twice as great.

The force of gravity is proportional to mass!

$$
\left(F_{\mathrm{G}}=m g\right)
$$

$3^{\text {rd }}$ Law:

All forces are interactions, so it is Earth that pulls the apple.

If Earth pulls apple, then apple pulls Earth!

It stands to reason the pull of the apple on the Earth depends on the mass of the Earth!

Earth attracts all things...

...but all of those things also attract the Earth.

Not only Earth has gravity, the apple also has gravity, and any other thing with mass has gravity!

$1^{\text {st }}$ Law:

Moon would fly off into space if there were $n o$ force.

Moon's curved path shows that it is accelerating

$$
\underline{2}^{\text {nd }} \text { Law: }
$$

Moon's acceleration shows there must be a force toward the Earth.

Earth exerts force on Moon. Moon exerts equal and opposite force on Earth.

Similarly, Earth must accelerate toward the Sun!

Sun exerts force on the Earth.

Earth exerts force on the Sun.

Newton' s Law of Universal Gravitation:

Every object in the universe attracts every other object in the universe.

Newton' s Law of Universal Gravitation:

$$
F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
$$

where: $m=$ mass
$r=$ distance between centers
$G=$ universal gravitational constant:
$6.674 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2}$

"Inverse Square Law"

0	1	2	3	4	5	6	7	8	9
		$10 R_{\mathrm{E}}$							

720 N
Consider a person that weighs 720 N on the surface of the Earth, who is then transported away to greater and greater distances...

"Inverse Square Law"

0	1	2	3	4	5	6	7	8	9

180 N
$\frac{720}{2^{2}}=180$
At twice the distance the
person's mass is unchanged, but his weight is one fourth its original value.

"Inverse Square Law"

$\frac{720}{3^{2}}=80$

"Inverse Square Law"

$$
\frac{720}{4^{2}}=45
$$

"Inverse Square Law"

$$
\frac{720}{5^{2}}=29
$$

"Inverse Square Law"

"Inverse Square Law"

"Inverse Square Law"

Henry Cavendish determined G in 1798

Fig. 1

Periodic Motion

I. Circular Motion

- kinematics \& centripetal acceleration
- dynamics \& centripetal force
- centrifugal force
II. Universal Gravitation
- Newton" s "4 th" Law
- force fields \& orbits
III. Simple Harmonic Motion
- pendulums, springs, etc

	The student will be able to:	
1	Define and calculate period and frequency.	
2	Apply the concepts of position, distance, displacement, speed, velocity, acceleration, and force to circular motion.	
3	State and correctly apply the relation between speed, radius, and period for uniform circular motion.	
4	State and correctly apply the relation between speed, radius, and centripetal acceleration for uniform circular motion.	$1-14$
5	Distinguish and explain the concepts of centripetal vs. centrifugal force.	$15-16$
6	State and apply Newton's Law of Universal Gravitation.	$17-28$
7	Combine equations of circular motion and gravitation to solve problems involving orbital motion.	$29-37$
8	State and apply the relation between length, period, and g for a pendulum.	$38-40$
9	Solve problems involving application of Hooke' s Law to the periodic motion of a mass attached to a spring. Also state and apply the relation between mass, period, and spring constant.	$41-43$

Force Fields

A field is a region where a particular force has influence. There are many types of fields in physics: gravitational fields, magnetic fields, electric fields, etc.

Field strength is defined as the amount of force per unit of affected property.

A field has direction the same as the force. A field can be visualized as a series of vectors or lines that point in the direction of the force.

Earth's Gravitational Field

Gravitational Field

$$
g=G \frac{M}{r^{2}}
$$

where: $M=$ mass of the field's source $r=$ distance between centers $G=$ universal gravitational constant: $6.674 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2}$

GPS BIIA-26 (PRN

 10)

Satellite ID:	23953
Velocity $(\mathrm{km} / \mathrm{s}):$	3.903
Velocity $(\mathrm{mi} / \mathrm{s}):$	2.425
Latitude $\left({ }^{\circ}\right):$	44.117
Longitude $\left({ }^{\circ}\right):$	-175.494
Height $(\mathrm{km}):$	19993.809
Height $(\mathrm{mi}):$	12423.573

The orbit of a satellite is controlled by gravity. The centripetal acceleration is g.

A circular orbit for an object under the sole influence of gravity satisfies three equations:

$$
a=\frac{v^{2}}{r}
$$

GPS BIIA-26 (PRN 10)

Satellite ID:	23953
Velocity $(\mathrm{km} / \mathrm{s}):$	3.903
Velocity $(\mathrm{mi} / \mathrm{s}):$	2.425
Latitude $\left({ }^{\circ}\right):$	44.117
Longitude $\left({ }^{\circ}\right):$	-175.494
Height $(\mathrm{km}):$	19993.809
Height $(\mathrm{mi}):$	12423.573

