Vectors – 2-D Kinematics

- I. Vector Addition/Subtraction - Graphical
- II. Vector Components- Applications
- III. Vector Addition/Subtraction - Numerical
- IV. Relative Motion
- V. Projectile Motion

© Matthew W. Milligan

	The student will be able to:	HW:
1	Add or subtract vectors graphically and determine a vector's opposite.	1, 2
2	Calculate the components of a vector given its magnitude and direction.	3,4
3	Calculate the magnitude and direction of a vector given its components.	5 - 9
4	Use vector components as a means of analyzing/ solving 2-D motion problems.	10 - 13
5	Add or subtract vectors analytically (using trigonometric calculations).	14, 15
6	Use vector addition or subtraction as a means of solving relative velocity problems.	16 - 20
7	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems and apply vector properties to projectile motion.	21 - 38

 $A = 13.0 \text{ m}, 22.6^{\circ}$ $B = 5.00 \text{ m}, 36.9^{\circ}$ $\Sigma = 17.9 \text{ m}, 26.6^{\circ}$

 $A = 13.0 \text{ m}, 22.6^{\circ}$ $B = 5.00 \text{ m}, 36.9^{\circ}$ $\Sigma = 17.9 \text{ m}, 26.6^{\circ}$

 $A = 13.0 \text{ m}, 22.6^{\circ}$ $C = 5.00 \text{ m}, 143.1^{\circ}$ $\Sigma = 11.3 \text{ m}, 45.0^{\circ}$

 $\frac{C = 5.00 \text{ m}, 143.1^{\circ}}{\Sigma = 11.3 \text{ m}, 45.0^{\circ}}$

 $C = 5.00 \text{ m}, 143.1^{\circ}$ $D = 13.0 \text{ m}, 292.6^{\circ}$ $\Sigma = 9.06 \text{ m}, 276.3^{\circ}$

$$D_{y} = -12 \text{ m}$$

$$D_{y} = -9 \text{ m}$$

$$D_{x} = 5 \text{ m}$$

C = 5.00D = 13.0 $\Sigma = 9.06$

Using Components to Add Vectors

$$\vec{A} + \vec{B} = \vec{\Sigma}$$

$$A_x + B_x = \Sigma_x \qquad A_y + B_y = \Sigma_y$$

- Determine the components of each vector.
- Add like components.
- Use Σ_x and Σ_y to find the magnitude and direction of the resultant.