Vectors - 2-D Kinematics

I. Vector Addition/Subtraction

- Graphical
II. Vector Components
- Applications
III. Vector Addition/Subtraction
- Numerical
IV. Relative Motion
V. Projectile Motion

	The student will be able to:	HW:
1	Add or subtract vectors graphically and determine a vector's opposite.	
2	Calculate the components of a vector given its magnitude and direction.	
3	Calculate the magnitude and direction of a vector given its components.	
4	Use vector components as a means of analyzing/ solving 2-D motion problems.	-13
5	Add or subtract vectors analytically (using trigonometric calculations).	14,
6	Use vector addition or subtraction as a means of solving relative velocity problems.	16-20
7	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems and apply vector properties to projectile motion.	21-38

A
$\mathbf{A}=13.0 \mathrm{~m}, 22.6^{\circ}$
$\mathbf{B}=5.00 \mathrm{~m}, 36.9^{\circ}$
$\boldsymbol{\Sigma}=17.9 \mathrm{~m}, 26.6^{\circ}$

$\mathbf{A}=13.0 \mathrm{~m}, 22.6^{\circ}$
$\mathbf{B}=5.00 \mathrm{~m}, 36.9^{\circ}$
$\boldsymbol{\Sigma}=17.9 \mathrm{~m}, 26.6^{\circ}$

$\mathbf{A}=13.0 \mathrm{~m}, 22.6^{\circ}$
$\mathbf{C}=5.00 \mathrm{~m}, 143.1^{\circ}$
$\boldsymbol{\Sigma}=11.3 \mathrm{~m}, 45.0^{\circ}$

$\mathbf{A}=13.0 \mathrm{~m}, 22.6^{\circ}$
$\mathbf{C}=5.00 \mathrm{~m}, 143.1^{\circ}$
$\Sigma=11.3 \mathrm{~m}, 45.0^{\circ}$

$$
\begin{aligned}
& \mathbf{C}=5.00 \mathrm{~m}, 143.1^{\circ} \\
& \mathbf{D}=13.0 \mathrm{~m}, 292.6^{\circ} \\
& \hline \boldsymbol{\Sigma}=9.06 \mathrm{~m}, 276.3^{\circ}
\end{aligned}
$$

Using Components to Add Vectors

$$
\vec{A}+\vec{B}=\vec{\Sigma}
$$

$$
A_{\mathrm{x}}+B_{\mathrm{x}}=\Sigma_{\mathrm{x}} \quad A_{\mathrm{y}}+B_{\mathrm{y}}=\Sigma_{\mathrm{y}}
$$

- Determine the components of each vector.
- Add like components.
- Use Σ_{x} and Σ_{y} to find the magnitude and direction of the resultant.

