Projectile Motion

© Matthew W. Milligan

Vectors – 2-D Kinematics

- I. Vector Addition/Subtraction - Graphical
- II. Vector Components- Applications
- III. Vector Addition/Subtraction- Numerical
- IV. Relative Motion
- V. Projectile Motion

© Matthew W. Milligan

	The student will be able to:	HW:
1	Add or subtract vectors graphically and determine a vector's opposite.	1,2
2	Calculate the components of a vector given its magnitude and direction.	3,4
3	Calculate the magnitude and direction of a vector given its components.	5 - 9
4	Use vector components as a means of analyzing/ solving 2-D motion problems.	10 - 13
5	Add or subtract vectors analytically (using trigonometric calculations).	14, 15
6	Use vector addition or subtraction as a means of solving relative velocity problems.	16 - 20
7	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems and apply vector properties to projectile motion.	21 - 38

What is a "projectile"?

- A projectile is an object launched by some initial force, which then proceeds under the sole influence of gravity.
- The equations you will learn apply to the subsequent motion of the object *after* launch and *before* impact.

Projectile *x* and *y*

• Horizontally a projectile moves with a constant velocity. Velocity is constant in the *x*-direction.

Diameter of ball: 6.7 cm Strobe: 1800 flashes/minute

The ball has fallen 8 diameters after 10 flashes of the strobe light.

What is its vertical acceleration?

Projectile *x* and *y*

- Horizontally a projectile moves with a constant velocity. Velocity is constant in the *x*-direction.
- Vertically a projectile moves with constant acceleration. Acceleration is *g* in the *y*-direction.
- The forward motion of a projectile does not alter the effect of gravity – nor does the force of gravity alter the forward motion of a projectile.

$$\vec{v}_{f} = \vec{v}_{i} + \vec{a}t$$

$$\vec{d} = \vec{v}_{i}t + \frac{1}{2}\vec{a}t^{2}$$

$$a_{x} = 0 \qquad a_{y} = -g$$

$$v_{fx} = v_{ix} + a_{x}t \qquad v_{fy} = v_{iy} + a_{y}t$$

$$d_{x} = v_{ix}t + \frac{1}{2}a_{x}t^{2} \qquad d_{y} = v_{iy}t + \frac{1}{2}a_{y}t^{2}$$

Components of Projectile Motion

© Matthew W. Milligan

