Projectile Motion

Vectors - 2-D Kinematics

I. Vector Addition/Subtraction

- Graphical
II. Vector Components
- Applications
III. Vector Addition/Subtraction
- Numerical
IV. Relative Motion
V. Projectile Motion

	The student will be able to:	HW:
1	Add or subtract vectors graphically and determine a vector's opposite.	
2	Calculate the components of a vector given its magnitude and direction.	
3	Calculate the magnitude and direction of a vector given its components.	
4	solving 2-D motion problems.	
5	trigonometric calculations).	
6	Use vector addition or subtraction as a means of solving relative velocity problems.	
7	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems and apply vector properties to projectile motion.	21-38

What is a "projectile"?

- A projectile is an object launched by some initial force, which then proceeds under the sole influence of gravity.
- The equations you will learn apply to the subsequent motion of the object after launch and before impact.

Projectile x and y

- Horizontally a projectile moves with a constant velocity. Velocity is constant in the x-direction.

Diameter of ball: 6.7 cm Strobe: 1800 flashes/minute

The ball has fallen 8 diameters after 10 flashes of the strobe light.

What is its vertical acceleration?

Projectile x and y

- Horizontally a projectile moves with a constant velocity. Velocity is constant in the x-direction.
- Vertically a projectile moves with constant acceleration. Acceleration is g in the y-direction.
- The forward motion of a projectile does not alter the effect of gravity - nor does the force of gravity alter the forward motion of a projectile.

$$
\begin{aligned}
& \vec{v}_{f}=\vec{v}_{i}+\vec{a} t \\
& \vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
a_{x}=0 & a_{y}=-g \\
v_{f x}=v_{i x}+a_{x} t & v_{f y}=v_{i y}+a_{y} t \\
d_{x}=v_{i x} t+\frac{1}{2} a_{x} t^{2} & d_{y}=v_{i y} t+\frac{1}{2} a_{y} t^{2}
\end{array}
$$

Components of Projectile Motion

Horizontal

 Vertical$$
\begin{aligned}
a_{x} & =0 \\
v_{f x} & =v_{i x} \\
d_{x} & =v_{i x} t
\end{aligned}
$$

$$
a_{y}=-g
$$

$$
v_{f y}=v_{i y}+a_{y} t
$$

$$
d_{y}=v_{i y} t+\frac{1}{2} a_{y} t^{2}
$$

© Matthew W. Milligan

