net Force

understanding $\mathbf{F}_{net} = \mathbf{ma}$

(Click on the Next Page button or use the Page Down key on your keyboard)

Key Ideas

 F_{net} is the vector sum of all forces acting on a single object:

$$F_{\text{net}} = \Sigma F = F_1 + F_2 + F_3 + \dots$$

 It is always F_{net} that determines the acceleration of an object:

$$a = F_{net} / m$$

A common use of Newton's 2nd Law:

Solve for an object's acceleration, given force and mass.

$$F_{net} = ?$$
 $F_1 = 12 \text{ N}$
 $a = ?$

$$F_{\text{net}} = 12 \text{ N}, 90^{\circ}$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 90^{\circ}$$

$$a = 6 \text{ m/s}^2, 90^\circ$$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 0^{\circ}$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 0^{\circ}$$

$$a = 2 \text{ m/s}^2, 0^{\circ}$$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = ?$$

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

$$a = ?$$

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

$$a = 0 \text{ m/s}^2$$

Note: object could be at rest or moving with constant velocity (in any direction).

$$\mathbf{F}_{\text{net}} = ?$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 180^{\circ}$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 180^{\circ}$$

$$a = 3 \text{ m/s}^2, 180^\circ$$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = ?$$

$$F_{\text{net}} = 12 \text{ N}, 270^{\circ}$$

$$F_{\text{net}} = 12 \text{ N}, 270^{\circ}$$

$$a = 6 \text{ m/s}^2, 270^\circ$$

$$F_1 = 6 \text{ N}$$
 $m = 3 \text{ kg}$
 $F_2 = 2 \text{ N}$
 $F_3 = 14 \text{ N}$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = ?$$

$$F_{net} = 6 \text{ N}, 90^{\circ}$$

$$F_{net} = 6 \text{ N}, 90^{\circ}$$

$$a = 2 \text{ m/s}^2, 90^{\circ}$$

$$F_{net} = ?$$
 $F_{3} = 5 \text{ N}$
 $a = ?$
 $F_{1} = 4 \text{ N}$
 $F_{2} = 4 \text{ N}$

$$F_{net} = 5 \text{ N}, 90^{\circ}$$

$$F_{net} = 5 \text{ N}, 90^{\circ}$$

$$a = 5 \text{ m/s}^2, 90^\circ$$

$$F_{net} = ?$$
 $F_{2} = 10 \text{ N}$
 $a = ?$
 $F_{1} = 6 \text{ N}$
 $F_{3} = 2 \text{ N}$
 $F_{4} = 10 \text{ N}$

$$F_{net} = 4 \text{ N}, 180^{\circ}$$

$$F_{net} = 4 \text{ N}, 180^{\circ}$$

$$F_2 = 10 \text{ N}$$
 $F_1 = 6 \text{ N}$
 $F_3 = 2 \text{ N}$
 $F_4 = 10 \text{ N}$

$$a = 0.5 \text{ m/s}^2, 180^\circ$$

Another use of Newton's 2nd Law:

Solve for force(s) acting on an object, given acceleration and mass.

$$\mathbf{F}_{\text{net}} = ?$$

$$a = 3 \text{ m/s}^2, 180^\circ$$

$$F_{net} = 6 N, 180^{\circ}$$

$$a = 3 \text{ m/s}^2, 180^\circ$$

$$F_{net} = 6 \text{ N}, 180^{\circ}$$

$$a = 3 \text{ m/s}^2, 180^\circ$$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = 3 \text{ m/s}^2, 0^{\circ}$$

$$F_{\text{net}} = 30 \text{ N}, 0^{\circ}$$

$$a = 3 \text{ m/s}^2, 0^{\circ}$$

$$F_{net} = 30 \text{ N}, 0^{\circ}$$

$$a = 3 \text{ m/s}^2, 0^{\circ}$$

$$\mathbf{F}_{\text{net}} = ?$$

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

$$F_{net} = ?$$
 $F_{1} = 30 \text{ N}$
 $a = 2 \text{ m/s}^{2}, 0^{\circ}$
 $F_{2} = ?$
 $F_{3} = ?$

$$F_{net} = 6 N, 0^{\circ}$$

$$F_{net} = 6 \text{ N}, 0^{\circ}$$

$$\mathbf{F}_{net} = ?$$

$$\mathbf{F}_{2} = 12 \, \mathbf{N} \qquad \mathbf{a} = ?$$

$$\mathbf{F}_{3} = ?$$

$$\mathbf{F}_{3} = ?$$

$$\mathbf{F}_{4} = ?$$

$$\mathbf{F}_{4} = ?$$

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

 $a = 0 \text{ m/s}^2$

Object is moving to the right with constant velocity.

$$\mathbf{F}_{\text{net}} = 0 \text{ N}$$

$$F_2 = 12 \text{ N}$$
 $m = 4 \text{ kg}$
 $F_1 = 8 \text{ N}$
 $F_3 = ?$
 $F_4 = ?$

$$\mathbf{F}_{\text{net}} = ?$$

$$a = 1 \text{ m/s}^2, 270^\circ$$

$$F_{net} = 4 N, 270^{\circ}$$

$$a = 1 \text{ m/s}^2, 270^\circ$$

$$F_{net} = 4 \text{ N}, 270^{\circ}$$

$$F_{net} = ?$$
 $F_{2} = 5 \text{ N}$
 $F_{3} = 10 \text{ N}$
 $F_{3} = 15 \text{ N}$
 $F_{3} = 15 \text{ N}$
 $F_{5} = ?$
 $F_{6} = ?$

$$F_{net} = 10 \text{ N}, 180^{\circ}$$

$$F_{net} = 10 \text{ N}, 180^{\circ}$$

