Combination Circuits

Series and Parallel (not or)

Electricity

- I. Charge and Force
 - concepts and definitionCoulomb's Law
- II. Current and Potential- electric energy and power
- III. Resistance and Ohm's Law
- **IV. DC Circuits**
 - series vs. parallel
 - Kirchoff's Laws

	The student will be able to:	HW:
1	Relate electrical phenomena to the motion and position of the fundamental charge found on electrons and protons and recognize the coulomb as the SI unit of charge and <i>e</i> as the elementary quantum of charge.	1-6
2	State and apply Coulomb's Law to solve problems relating force, charge, and distance.	7 – 11
3	Define electric current and the ampere and solve problems relating current to charge and time.	12 – 14
4	Solve problems involving electric power.	15 – 22
5	Define resistance the Ohm and solve problems using Ohm's Law to relate voltage, current, and resistance.	23 - 32
6	Determine resistance for series or parallel combinations of resistors or as a function of resistivity, length, and cross-sectional area for a single resistor.	33 – 37
7	State and apply Kirchoff's node and loop rules and solve related problems, including analysis of battery resistor circuits with series and/ or parallel connections.	38-48

Determine the readings of each meter.

Kirchhoff's Laws

• Node Rule: The sum of currents entering a node equals the sum of currents exiting a node.

Because charge is conserved!

• Loop Rule: The sum of the potential differences across all elements around any loop equals zero.

Because energy is conserved!

Loops!

Holiday lights – a string of 100 "Merry Midgets" – is it series or parallel?

Closer inspection of the wiring reveals...

Each resistor in the circuit is 10.0Ω . Determine the *change* in the power of the diagonal resistor when the switch is closed.