Combination Circuits

Series and Parallel (not or)

Electricity

I. Charge and Force

- concepts and definition
- Coulomb' s Law
II. Current and Potential
- electric energy and power
III. Resistance and Ohm's Law
IV. DC Circuits
- series vs. parallel
- Kirchoff's Laws

	The student will be able to:	HW:
1	Relate electrical phenomena to the motion and position of the fundamental charge found on electrons and protons and recognize the coulomb as the SI unit of charge and e as the elementary quantum of charge.	$1-6$
2	State and apply Coulomb's Law to solve problems relating force, charge, and distance.	$7-11$
3	Define electric current and the ampere and solve problems relating current to charge and time.	$12-14$
4	Solve problems involving electric power.	$15-22$
5	Define resistance the Ohm and solve problems using Ohm's Law to relate voltage, current, and resistance.	$23-32$
6	Determine resistance for series or parallel combinations of resistors or as a function of resistivity, length, and cross-sectional area for a single resistor.	$33-37$
7	State and apply Kirchoff's node and loop rules and solve related problems, including analysis of battery resistor circuits with series and/ or parallel connections.	$38-48$

$R_{1}=10.0 \Omega$

$$
R_{3}=10.0 \Omega
$$

© Matthew W. Milligan

Determine the readings of each meter.

$$
R_{1}=50.0 \Omega
$$

$$
R_{3}=20.0 \Omega
$$

© Matthew W. Milligan

Kirchhoff's Laws

- Node Rule: The sum of currents entering a node equals the sum of currents exiting a node.

Because charge is conserved!

- Loop Rule: The sum of the potential differences across all elements around any loop equals zero.

Because energy is conserved!

© Matthew W. Milligan

Nodes!

© Matthew W. Milligan

Nodes!

© Matthew W. Milligan

Nodes!

© Matthew W. Milligan

Nodes!

© Matthew W. Milligan

Nodes!

© Matthew W. Milligan

Loops!

© Matthew W. Milligan

Loops!

$$
+12 \mathrm{~V}-
$$

$$
V+10-30=0+2-12-V=0
$$

Loops! $+12 \mathrm{~V}-$

Loops!
 $$
+12 \mathrm{~V}-42-12-30+20-20=0
$$

$$
+12 \mathrm{~V}_{6 \mathrm{~A}} \quad 5 \mathrm{~A}
$$

© Matthew W. Milligan

© Matthew W. Milligan

Holiday lights - a string of 100 "Merry Midgets"

- is it series or parallel?

Closer inspection of the wiring reveals...

© Matthew W. Milligan
...two parallel sets of 50 bulbs in series!

But wait.

Closer inspection of each bulb reveals...

normal blown

R_{1} low infinite
R_{2} high low(er)
...a parallel circuit within the bulb!
9.00 V
$9.00 \mathrm{~V} \frac{-}{T}$

Each resistor in the circuit is 10.0Ω.
Determine the change in the power of the diagonal resistor when the switch is closed.

