Newton' s 3 ${ }^{\text {rd }}$ Law

The Nature of Force

Forces - Dynamics

I. Laws of Motion: $1 \& 2$

- inertia, force, mass
- weight
II. Law 3
- interaction \& nature of force
- types of force: normal, friction
- air resistance, terminal velocity
III. Applications/Problem Solving
- components, inclines

	The student will be able to:	HW:
1	State Newton' $1^{\text {st }}$ and 2 2nd situws of Motion and apply these laws to physical situans in order to determine what forces act on an object and to explain the	$1-5$
2	Recognize and state the proper SI unit of force and give its equivalence in fundamental units and use the relation $\mathbf{F}_{\text {net }}$ = ma to solve problems.	$6-10$
3	Recognize the difference between weight and mass and convert from one to the other.	$11-18$
4	State and utilize Newton' s 3rd Law to solve related problems.	$19-21$
5	Understand and utilize the concept of the normal force to solve related problems.	$22-25$
6	Understand and utilize the relation between friction force, normal force, and coefficient of friction for both cases: static and kinetic.	$26-32$
7	State the factors that influence air resistance and describe qualitatively the effect of each factor on the magnitude of the frictional force. And explain what is meant by "terminal velocity".	$33-35$
8	Resolve forces into components using trigonometry and use the results to solve related force problems.	$36-40$
9	Apply the concept of force components to objects on an incline and solve related problems.	$41-47$

Newton's $3^{\text {rd }}$ Law of Motion

Forces always occur in pairs. If object A exerts a force on object B, then object B exerts a force on object A that is equal in magnitude and opposite in direction.

> Popularly known as: "equal and opposite action and reaction".

All forces arise in pairs as a result of an interaction of two objects. The equal and opposite forces (of each pair) act on two separate objects.

Newton's $3^{\text {rd }}$ Law of Motion

Forces always occur in pairs. If object A exerts a force on object B, then object B exerts a force on object A that is equal in magnitude and opposite in direction.

$$
\vec{F}_{B A}=-\vec{F}_{A B}
$$

What forces are there when a person stands at rest on the ground being pulled down by gravity?

If this is "the action", what is "the reaction"?

What object exerts this force on the person?

Is this a $3^{\text {rd }}$ Law pair of forces?

These two forces are

No! Not every pair of equal and opposite
forces is a $3^{r d}$ Law pair!
not always equal and opposite - only if the person is not accelerating.

This is a $3^{\text {rd }}$ Law pair of forces: equal and opposite at all times!

a $3{ }^{\text {rd }}$ Law pair of forces!

$\begin{array}{cc}\text { Force of } & \\ \begin{array}{cc}\text { Ferson on } \\ \text { Floor } & F_{\mathrm{PF}}\end{array} & \downarrow\end{array} F_{\mathrm{FP}}$
Force of Floor on Person

$$
\stackrel{\rightharpoonup}{F}_{P F}=-\stackrel{\rightharpoonup}{F}_{F P}
$$

always equal and opposite!

Not a $3^{\text {rd }}$ Law pair of forces!

$$
\begin{gathered}
\stackrel{\rightharpoonup}{F}_{E P} \stackrel{?}{=}-\stackrel{\rightharpoonup}{F}_{F P} \\
\text { maybe... } \\
\ldots \text { maybe not }
\end{gathered}
$$

Not always equal and opposite!

Laws of Motion for Systems

- A "system" is any collection of particles or masses. Examples: a car, a human body, the solar system.
- Internal forces are irrelevant - being equal and opposite, there is no net effect on the system as a whole.
- The center of mass will stay at rest or move with constant velocity if net external force is zero.
- The acceleration of the center of mass equals net external force divided by total mass.
- The center of mass is the "balancing point" for the system.

Example System: Person in Freefall

System	all the parts that make up a person
External Forces	gravity acting on each part of the body
Internal Forces	muscles moving body parts and tissues connecting the parts of the body
$2^{\text {nd }}$ Law	$a=F_{\text {net }} / m=9.80 \mathrm{~m} / \mathrm{s}^{2}$
Result	The center of mass of the person accelerates downward at $9.80 \mathrm{~m} / \mathrm{s}^{2}$ regardless of how he $/$ she moves arms or legs! Push your arms down, your arms push you up, equal and opposite.

Example System:

 Descending Yo-Yo

$$
\begin{aligned}
T & =0.65 \mathrm{~N} \\
m & =0.10 \mathrm{~kg}
\end{aligned}
$$

System	all the parts that make up the yo-yo
External Forces	gravity down and tension of string up
Internal Forces	bonds between atoms and molecules that keep the yo-yo solid and prevent it breaking apart as it spins
$2^{\text {nd }}$ Law	$a=F_{\text {net }} / m=(0.98-0.65) / 0.1=3.3 \mathrm{~m} / \mathrm{s}^{2}$
Result	The center of the yo-yo accelerates downward at $3.3 \mathrm{~m} / \mathrm{s}^{2}$ in spite of its spinning. Different parts of the yo-yo have different accelerations!

Objects in Contact (when worlds collide ...)

- Whenever two objects touch there will be an interaction and forces will occur.
- There are two aspects of contact: frictional force and normal force.

	The student will be able to:	HW:
1	State Newton' $1^{\text {st }}$ and 2 2nd situaws of Motion and apply these laws to physical situans in order to determine what forces act on an object and to explain the	$1-5$
2	Recognize and state the proper SI unit of force and give its equivalence in fundamental units and use the relation $\mathbf{F}_{\text {net }}$ = ma to solve problems.	$6-10$
3	Recognize the difference between weight and mass and convert from one to the other.	$11-18$
4	State and utilize Newton' s 3 ${ }^{\text {rd }}$ Law to solve related problems.	$19-21$
5	Understand and utilize the concept of the normal force to solve related problems.	$22-25$
6	Understand and utilize the relation between friction force, normal force, and coefficient of friction for both cases: static and kinetic.	$26-32$
7	State the factors that influence air resistance and describe qualitatively the effect of each factor on the magnitude of the frictional force. And explain what is meant by "terminal velocity".	$33-35$
8	Resolve forces into components using trigonometry and use the results to solve related force problems.	$36-40$
9	Apply the concept of force components to objects on an incline and solve related problems.	$41-47$

Normal Force

- The word "normal" in this context means perpendicular to the surface of an object.
- By definition, "normal force" is the amount of force perpendicular to the surface at a point of contact between two objects.
- The magnitude of the normal force depends on how much the two objects are pressed together and results from an interaction of atoms in the objects.

Normal Force

- Normal forces occur whenever two objects touch and thus are all around us!
- Standing on a floor your feet and the floor experience normal force: feet push down on floor and floor pushes up on feet (the $3^{\text {rd }}$ Law pair mentioned above).
- Problem solving: in diagrams draw a normal force perpendicular to the surface at any point of contact. The size of this force can vary greatly depending on various factors, such as other forces present and acceleration of the object(s) involved...

