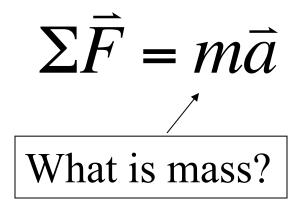
Weight

(not mass)

© Matthew W. Milligan

Forces – Dynamics


I. Laws of Motion: 1 & 2 - inertia, force, mass

- weight

II. Law 3

- interaction & nature of force
- types of force: normal, friction
- air resistance, terminal velocity
- III. Applications/Problem Solving- components, inclines

	The student will be able to:	HW:
1	State Newton's 1 st and 2 nd Laws of Motion and apply these laws to physical situations in order to determine what forces act on an object and to explain the b object's resulting behavior.	1-5
2	Recognize and state the proper SI unit of force and give its equivalence in fundamental units and use the relation $\mathbf{F}_{net} = m\mathbf{a}$ to solve problems.	6 – 10
3	Recognize the difference between weight and mass and convert from one to the other.	11 – 18
4	State and utilize Newton's 3 rd Law to solve related problems.	19 - 21
5	Understand and utilize the concept of the normal force to solve related problems.	22 – 25
6	Understand and utilize the relation between friction force, normal force, and coefficient of friction for both cases: static and kinetic.	26-32
7	State the factors that influence air resistance and describe qualitatively the effect of each factor on the magnitude of the frictional force. And explain what is meant by "terminal velocity".	33 – 35
8	Resolve forces into components using trigonometry and use the results to solve related force problems.	36-40
9	Apply the concept of force components to objects on an incline and solve related problems.	41 – 47

Mass is a measure of the quantity of matter within an object. (How many protons, neutrons, electrons, etc...)

Mass is a measure of *inertia*! The more the mass of an object, the greater its tendency to maintain its state of motion (it *accelerates less*).

Weight

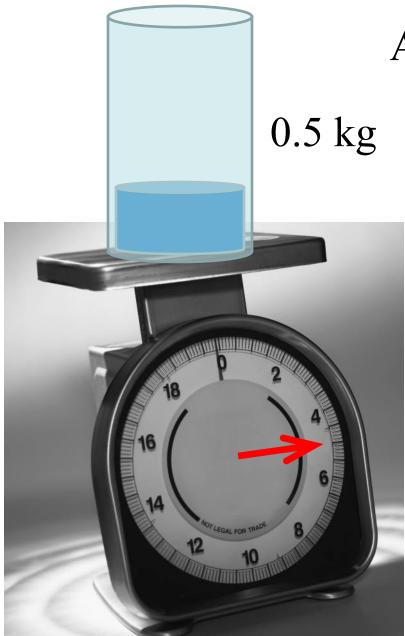
Weight is the amount that gravity pulls an object. (*i.e.* the magnitude of the force of gravity)

Weight is often confused with mass because the more massive an object the more it weighs – a proportional relationship. However, the two concepts are not at all the same! If there were no gravity would you be able to judge the mass of an object?

Weight Equation

If gravity is the sole force on an object it has an acceleration of g, therefore by Newton's 2nd Law:

$$F_G = mg$$

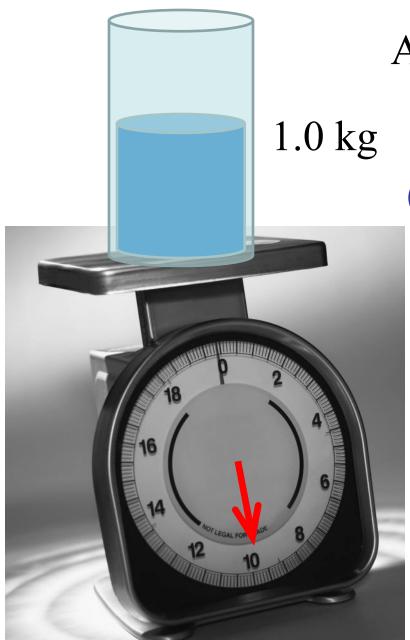

or

$$W = mg$$

This equation works for *any* situation – the object does \underline{not} have to be in freefall.

Weight vs. Mass

- Mass is an intrinsic characteristic of an object.
- Weight is a characteristic of on an environment *and* the mass of the object.
- Weight is measured in units of newtons; mass is measured in units of kilograms.
- Mass is purely a scalar; weight is the *magnitude* of a vector.



As the mass doubles ...

(*i.e.* If the amount of matter is doubled then the force of gravity is also doubled.)

... the weight doubles.

4.9 N

As the mass doubles ...

(*i.e.* If the amount of matter is doubled then the force of gravity is also doubled.)

... the weight doubles.

9.8 N

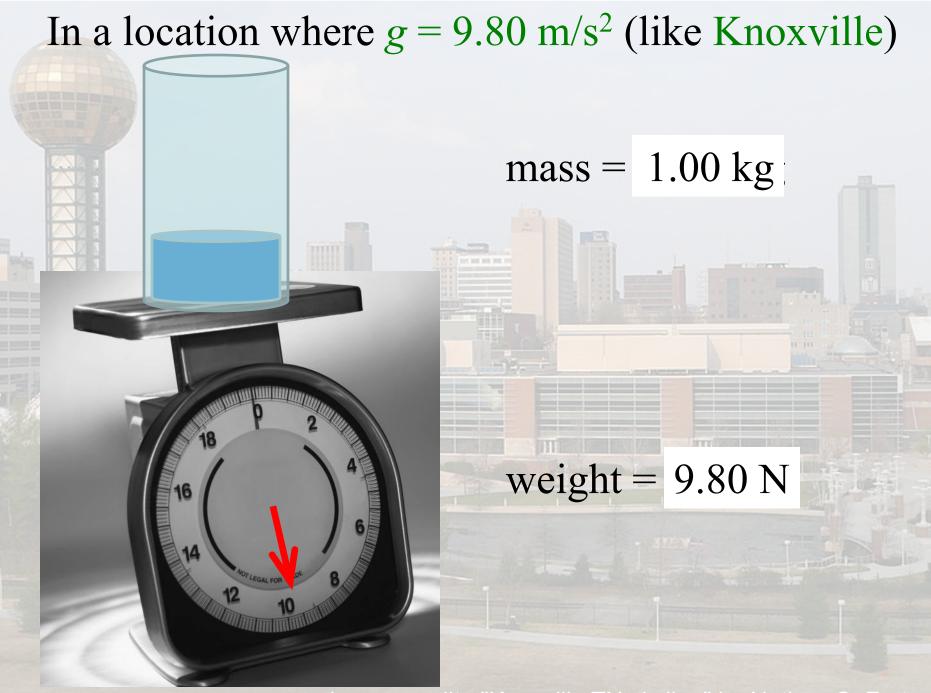


image credit: "Knoxville TN skyline" by Nathan C. Fortner

In a location where $g = 9.82 \text{ m/s}^2$ (like Oslo)

mass = 1.00 kg

weight = 9.82 N

image credit: "Oslo rådhus (by alexao)" by Alexander Ottesen

In a location where $g = 9.80 \text{ m/s}^2$ (like Knoxville)

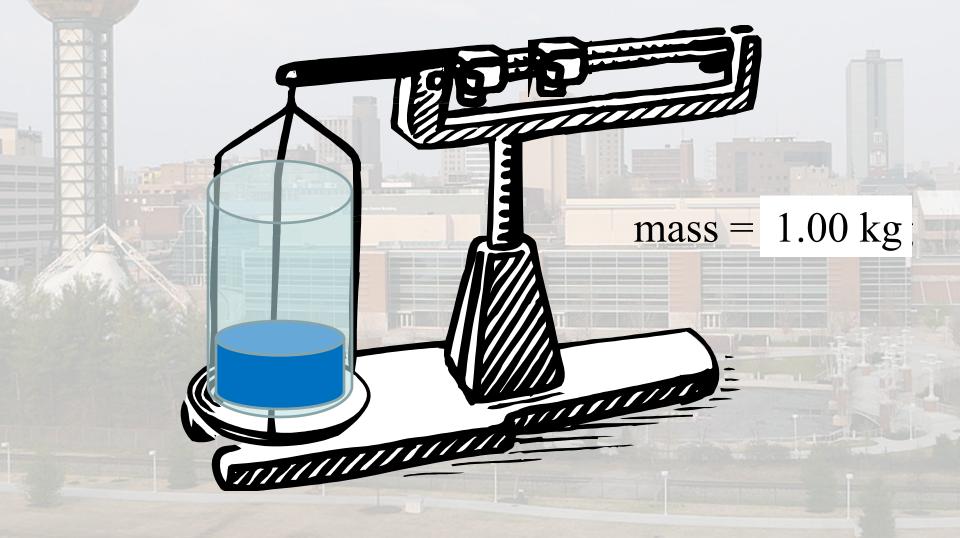


image credit: "Knoxville TN skyline" by Nathan C. Fortner

In a location where $g = 9.82 \text{ m/s}^2$ (like Oslo)

image credit: "Oslo rådhus (by alexao)" by Alexander Ottesen

mass = 1.00 kg