Position, Displacement, Distance

Motion: Where? How much?

Kinematics Unit Outline

I. Vectors
II. Six Definitions:

Distance, Position, Displacement, Speed, Velocity, Acceleration
III. Two Equations:

Velocity, Displacement
IV. Freefall

	The student will be able to:	HW:
1	Define and distinguish the concepts scalar and vector. Make the connection between the visual representation of a vector and its numerical representation of magnitude and direction angle.	
2	Define, distinguish, and apply the concepts: distance, displacement, position.	1,2
3	Define, distinguish, and apply the concepts: average speed, instantaneous speed, constant speed, average velocity, instantaneous velocity, constant velocity.	$3-7$
4	Define, distinguish, and apply the concepts: average acceleration and instantaneous acceleration, and constant acceleration.	$8-16$
5	State the displacement and velocity relations for cases of constant acceleration and use these to solve problems given appropriate initial conditions and values.	$17-28$
6	State and apply to applicable scenarios the conditions of freefall, including the value of g, and solve related problems.	$29-41$

Where is the Pinnacle? How far?

Definitions:

- Position is a vector indicating the location of an object; linear distance and direction from a point of reference. Symbols: \vec{r}, \vec{S}, or \vec{x}
- Displacement is the net change in position. Symbols: \vec{d} or $\Delta \vec{r}$ or $\Delta \vec{x}$
- Distance is length of the path traveled. Symbol:

$$
d \text { or } s \text { or } x
$$

Example: You drive from FHS to the Pinnacle

 Theatre - how do the concepts apply to this motion?

If you drive from FHS to the Pinnacle then "distance" is the length of the road(s) you take:召 か

```
Fox Den Golf Course
```


FHS to the Pinnacle

However, "displacement" is based on the end result and does not depend on the path travelled. One might describe it "as the crow flies" - i.e. the most direct route from start to finish.

$$
\text { displacement }=1850 \mathrm{~m}, 92^{\circ}
$$

FHS to the Pinnacle

initial position $=500 \mathrm{~m}, 49^{\circ}$ from town hall

FHS to the Pinnacle

FHS to the Pinnacle

final position $=2240 \mathrm{~m}, 83^{\circ}$ from town hall

FHS to the Pinnacle

distance, displacement, initial and final positions

Consider one-dimensional motion (i.e. linear motion) of a person that walks along a number line from the 3 meter mark to the 10 meter mark.

How would this motion be described and quantified with the concepts position, displacement, distance?

initial position, $\vec{x}_{\mathrm{i}}=3 \mathrm{~m}, 0^{\circ}$
final position, $\vec{x}_{\mathrm{f}}=10 \mathrm{~m}, 0^{\circ}$
displacement, $\vec{d}=7 \mathrm{~m}, 0^{\circ}$
distance, $d=7 \mathrm{~m}$

Notice: $10-3=7 \mathrm{~m}$ therefore: $\vec{d}=\Delta \vec{x}=\vec{x}_{f}-\vec{x}_{i}$

This is an equation that is equivalent to the word definition stating that displacement is equal to change in position.

Now suppose our man starts at the 5 m mark, runs to the -10 m mark, then strolls back to the -4 m mark:

Find: initial and final position, displacement, and distance.

initial position, $\vec{x}_{\mathrm{i}}=5 \mathrm{~m}, 0^{\circ}$
final position, $\vec{x}_{\mathrm{f}}=4 \mathrm{~m}, 180^{\circ}$ displacement, $\vec{d}=9 \mathrm{~m}, 180^{\circ}$
distance, $d=21 \mathrm{~m}$

Note that the equation works here so long as a negative value represents
$\vec{d}=\Delta \vec{x}=\vec{x}_{f}-\vec{x}_{i}$
$\vec{d}=\Delta \vec{x}=(-4)-5$
a left pointing vector.
$\vec{d}=\Delta \vec{x}=-9$
Opposite pointing
vectors are negative
$\vec{d}=9 \mathrm{~m}, 180^{\circ}$ values mathematically!

