AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Electron charge magnitude,

Coulomb's law constant,

Universal gravitational

constant,

Acceleration due to gravity at Earth's surface,

 $e = 1.60 \times 10^{-19} \text{ C}$

 $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP® PHYSICS 1 EQUATIONS

MECHANICS

$v_x = v_{x0} + a_x t$	a = acceleration
λ λθ λ	A = amplitude

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$
 $A = \text{amplitude}$
 $d = \text{distance}$
 $E = \text{energy}$

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$
 $f = \text{frequency}$
 $F = \text{force}$

$$\left|\vec{F}_f\right| \leq \mu \left|\vec{F}_n\right| \qquad \qquad L = \text{angular momentum} \\ \ell = \text{length}$$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$ $P = \text{power}$

$$\vec{p} = m\vec{v}$$
 $p = momentum$ $r = radius or separation$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $T = \text{period}$ $t = \text{time}$

$$K = \frac{1}{2}mv^2$$

$$U = \text{ potential energy}$$

$$V = \text{ volume}$$

$$v = \text{ speed}$$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$

$$x = position$$

$$y = height$$

$$\alpha = angular$$

$$\alpha = \frac{\Delta t}{\Delta t}$$

$$\alpha = \text{angular acceleration}$$

$$\mu = \text{coefficient of friction}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$
 $\theta = \text{angle}$
 $\rho = \text{density}$
 $\omega = \omega_0 + \alpha t$ $\tau = \text{torque}$

$$\omega = \text{angular speed}$$

$$x = A\cos(2\pi ft)$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$

$$\Delta U_g = mg \Delta y$$

$$\vec{\alpha} = \frac{2I}{I} = \frac{v_{net}}{I}$$

$$\tau = r \cdot F = rF \sin \theta$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\tau = r_{\perp}F = rF\sin\theta$$

$$I = \frac{1}{\omega} = \frac{1}{r}$$

$$L = I\omega$$

$$T_{\alpha} = 2\pi\sqrt{\frac{m}{r}}$$

$$L = I\omega$$

$$\Delta L = \tau \Delta t$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$\left| \vec{F}_s \right| = k |\vec{x}| \qquad \left| \vec{F}_g \right| = G \frac{m_1 m_2}{r^2}$$

$$U_s = \frac{1}{2}kx^2 \qquad \qquad \vec{g} = \frac{\vec{F}_g}{m}$$

$$\rho = \frac{m}{V} \qquad U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY

$$|\vec{F}_E| = k \left| \frac{q_1 q_2}{r^2} \right|$$
 $A = \text{area}$ $F = \text{force}$ $I = \text{current}$ $\ell = \text{length}$ $\ell = \text{power}$ $\ell = \text{power}$ $\ell = \text{power}$ $\ell = \text{power}$ $\ell = \text{separation}$ $\ell = \text{time}$ $\ell = \text{time}$

$$P = I \Delta V$$
 $V = \text{electric potential}$ $R_s = \sum R_i$ $\rho = \text{resistivity}$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

WAVES

$$\lambda = \frac{v}{f}$$

$$f = \text{frequency}$$

$$v = \text{speed}$$

$$\lambda = \text{wavelength}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area

Triangle
$$S = \text{surface area}$$

$$A = \frac{1}{2}bh \qquad b = \text{base}$$

$$h = \text{height}$$

$$\ell = \text{length}$$
Circle $w = \text{width}$

Threfore
$$w = \text{width}$$

$$A = \pi r^2 \qquad r = \text{radius}$$

$$C = 2\pi r$$

Rectangular solid Right triangle
$$V = \ell wh$$
 $c^2 = a^2 + b^2$

Cylinder
$$\sin \theta = \frac{a}{c}$$

$$V = \pi r^2 \ell$$

$$V = \pi r \ell$$

$$S = 2\pi r \ell + 2\pi r^2 \qquad \cos \theta = \frac{b}{c}$$

Sphere
$$\tan \theta = \frac{a}{b}$$

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

$$0$$

$$0$$

$$0$$