Ping Blaster!

Summary of Possibilities

Part 1

$$
\begin{aligned}
& m g h=\frac{1}{2} m v^{2} \\
& 9.8 \cdot 1=\frac{1}{2} v^{2} \\
& v=\sqrt{2 \cdot 9.8} \\
& v=4.43 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& m g h=\frac{1}{2} m v^{2} \\
& 9.8 \cdot 0.50=\frac{1}{2} v^{2} \\
& v=\sqrt{2 \cdot 9.8 \cdot 0.50} \\
& v=3.13 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

0.50 m

$$
\begin{array}{ll}
e=\frac{v^{\prime}}{v}=\frac{3.13}{4.43} & e=\sqrt{\frac{h^{\prime}}{h}}=\sqrt{\frac{0.50}{1.0}} \\
e=0.71 & e=0.71 \text {.tathew w. Milligar }
\end{array}
$$

$m g h=\frac{1}{2} m v^{2}$
$9.8 \cdot 0.8=\frac{1}{2} v^{2}$
$v=\sqrt{2 \cdot 9.8 \cdot 0.8}$
$v=3.96 \frac{\mathrm{~m}}{\mathrm{~s}}$
ea. object:
$v=3.96 \mathrm{~m} / \mathrm{s}$, down

Part 3

$$
\begin{aligned}
e & =\frac{v^{\prime}}{v} \\
v^{\prime} & =e v \\
v^{\prime} & =0.707 \cdot 3.96 \\
v^{\prime} & =2.80 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Part 4

$3.96 \mathrm{~m} / \mathrm{s}$, down $=\vec{v}_{1}$
$3.96 \mathrm{~m} / \mathrm{s}$, up $=\vec{v}_{2}$

$\vec{p}_{1}+\vec{p}_{2}=\vec{p}_{1}^{\prime}+\bar{p}_{2}^{\prime}$
$57.5(-3.96)+407(3.96)=57.5 x+407 y$
$K E_{1}+K E_{2}=K E_{1}^{\prime}+K E_{2}^{\prime}$
$\frac{1}{2} 57.5 \cdot 3.96^{2}+\frac{1}{2} 407 \cdot 3.96^{2}=\frac{1}{2} 57.5 x^{2}+\frac{1}{2} 407 y^{2}$

Part 4

$3.96 \mathrm{~m} / \mathrm{s}$, down $=\vec{v}_{1}$ $2.80 \mathrm{~m} / \mathrm{s}$, up $=\vec{v}_{2}$

$\bar{v}_{1}^{\prime}=7.89 \mathrm{~m} / \mathrm{s}$, up
$\vec{p}_{1}+\vec{p}_{2}=\vec{p}_{1}^{\prime}+\vec{p}_{2}^{\prime}$
$57.5(-3.96)+407(2.80)=57.5 x+407 y$
$K E_{1}+K E_{2}=K E_{1}^{\prime}+K E_{2}^{\prime}$
$\frac{1}{2} 57.5 \cdot 3.96^{2}+\frac{1}{2} 407 \cdot 2.80^{2}=\frac{1}{2} 57.5 x^{2}+\frac{1}{2} 407 y^{2}$

Part 4

$3.96 \mathrm{~m} / \mathrm{s}$, down $=\vec{v}_{1}$
$2.80 \mathrm{~m} / \mathrm{s}$, up $=\vec{v}_{2}$

$\vec{p}_{1}+\vec{p}_{2}=\vec{p}_{1}^{\prime}+\bar{p}_{2}^{\prime}$
$57.5(-3.96)+407(2.80)=57.5 x+407 y$
$\bar{v}_{2}-\vec{v}_{1}=e\left(\vec{v}_{1}^{\prime}-\vec{v}_{2}^{\prime}\right)$
$K E_{1}+K E_{2} \neq K E_{1}^{\prime}+K E_{2}^{\prime}$
$2.8-(-3.96)=0.707(x-y)$

Speed with which ping pong ball is launched: (assuming all collisions are elastic)

$$
v^{\prime}=v \frac{3 n-1}{n+1}
$$

where: $v=$ speed of each ball impacting floor $v^{\prime}=$ speed of ping pong ball immediately after collision $n=$ ratio of masses
(superball to ping pong ball)

Speed with which ping pong ball is launched: (assuming only first collision is inelastic)

$$
v^{\prime}=v \frac{n(1+2 e)-1}{n+1}
$$

where: $v=$ speed of each ball impacting floor $v^{\prime}=$ speed of ping pong ball immediately after collision $n=$ ratio of masses
(superball to ping pong ball) $e=$ elasticity of first collision

Speed with which ping pong ball is launched: (assuming both collisions are inelastic)

$$
v^{\prime}=v \frac{n\left(2 e+e^{2}\right)-1}{n+1}
$$

where: $v=$ speed of each ball impacting floor $v^{\prime}=$ speed of ping pong ball immediately after collision $n=$ ratio of masses
(superball to ping pong ball) $e=$ elasticity of each collision Mathew w. Milligan

Ratios of h and of v vs Ratios of m

$$
e=1.0,1.0
$$ (and elasticities of two collisions)

$$
e=0.80,1.0
$$

$$
e=0.80,0.80
$$

neight ratios
speed ratios

$$
\begin{array}{r}
e=1.0,1.0 \\
\frac{e=0.80,1.0}{e=0.80,0.80}
\end{array}
$$

Ratios of h and of v vs Ratios of m

$$
e=1.0,1.0
$$

(and elasticities of two collisions)

$$
e=0.80,1.0
$$

$$
e=0.80,0.80
$$

ping pong ball launched at 2 to 3 times speed of impact

$$
\begin{array}{r}
e=1.0,1.0 \\
\hline e^{-=0.80,1.0} \\
e=0.80,0.80
\end{array}
$$

typical mass ratio
super vs ping pong ball
ping pong ball launched to 4 to 8 times original height
ping pong ball launched at 2 to 3 times speed of impact

© Matthew W. Milligan

